2,563
Views
181
CrossRef citations to date
0
Altmetric
Review

Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives

, ORCID Icon & ORCID Icon
Pages 5375-5392 | Published online: 03 Dec 2020

References

  • MaD, HeH, LeungK, et al. Bioactive luminescent transition-metal complexes for biomedical applications. Angew Chem Int Ed. 2013;52(30):7666–7682. doi:10.1002/anie.201208414
  • MediciaS, PeanaaM, NurchibV, et al. Noble metals in medicine: latest advances. Coordin Chem Rev. 2015;284:329–350. doi:10.1016/j.ccr.2014.08.002
  • DragutanH, DragutanV, DemonceauA. Editorial of special issue ruthenium complex: the expanding chemistry of the ruthenium complexes. Molecules. 2015;20:17244–17274. doi:10.3390/molecules20091724426393560
  • LevinaA, MitraA, LayP. Recent developments in ruthenium anticancer drugs. Metallomics. 2009;1(6):458–470. doi:10.1039/b904071d21305154
  • GrubbsR. Ruthenium. Chem Eng News. 2015;3(36):112–113. doi:10.1021/cen-v081n036.p112
  • KuangD, ItoS, WengerB, et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc. 2006;128(12):4146–4154. doi:10.1021/ja058540p16551124
  • CornellA, SimonssD. Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions. J Electrochem Soc. 1993;140(11):3123–3129. doi:10.1149/1.2220996
  • SchutzR. Ruthenium enhanced titanium alloys. Platin Metals Rev. 1996;40:54–61.
  • VougioukalakisG, GrubbsR. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts †. Chem Rev. 2010;110(3):1746–1787. doi:10.1021/cr900242420000700
  • ArockiamP, BruneauC, DixneufP. Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem Rev. 2012;112(11):5879–5918. doi:10.1021/cr300153j22934619
  • ZhouX, ZhuD, LiaoY, et al. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat Protoc. 2014;9(5):1146–1159. doi:10.1038/nprot.2014.06024743421
  • ZhangW, ZhaoD, ZhangR, et al. A ruthenium(II) complex based turn-on electrochemiluminescence probe for the detection of nitric oxide. Analyst. 2011;136(9):1867–1872. doi:10.1039/c0an01003k21387076
  • Del MármolJ, FilevichO, EtcheniqueR. A ruthenium−rhodamine complex as an activatable fluorescent probe. Anal Chem. 2010;82(14):6259–6264. doi:10.1021/ac101212820583746
  • XuW, ZuoJ, WangL, et al. Dinuclear ruthenium(II) polypyridyl complexes as single and two-photon luminescence cellular imaging probes. Chem Commun. 2006;106(17):2123–2125. doi:10.1039/c3cc48916g
  • ShadeC, KennedyR, RougeJ, et al. Duplex-selective ruthenium-based DNA intercalators. Chem Eur J. 2015;21(31):10983–10987. doi:10.1002/chem.20150209526119581
  • CookN, KilpatrickK, SegatoriL, et al. Detection of α-synuclein amyloidogenic aggregates in vitro and in cells using light-switching dipyridophenazine ruthenium(II) complexes. J Am Chem Soc. 2012;134(51):20776–20782. doi:10.1021/ja310028723237404
  • MjosK, OrvigC. Metallodrugs in medicinal inorganic chemistry. Chem Rev. 2014;114(8):4540–4563. doi:10.1021/cr400460s24456146
  • RenfrewA. Transition metal complexes with bioactive ligands: mechanisms for elective ligand release and applications for drug delivery. Metallomics. 2014;6:1324–1335. doi:10.1039/C4MT00069B24850462
  • CrabtreeR. The Organometallic Chemistry of the Transition Metals. 6th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014.
  • Jabłońska-WawrzyckaA, RogalaP, MichałkiewiczS, et al. Ruthenium complexes in different oxidation states: synthesis, crystal structure, spectra and redox properties. Dalton Trans. 2013;42(17):6092–6101. doi:10.1039/c3dt32214a23381742
  • StrasserS, PumpE, FischerR, et al. On the chloride lability in electron-rich second-generation ruthenium benzylidene complexes. Monatsh Chem. 2015;146(7):1143–1151. doi:10.1007/s00706-015-1484-x
  • ReedijkJ. Metal-ligand exchange kinetics in platinum and ruthenium complexes. Platin Metals Rev. 2008;52(1):2–11. doi:10.1595/147106708X255987
  • GasserG, Metzler-NolteN. The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol. 2012;16(1–2):84–91. doi:10.1016/j.cbpa.2012.01.01322366385
  • BrabecV, NovakovaO. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat. 2006;9(3):111–122. doi:10.1016/j.drup.2006.05.00216790363
  • GatterK, BrownG, TrowbridgeI, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol. 1983;36(5):539–545. doi:10.1136/jcp.36.5.5396302135
  • DwyerF, GyarfasE, RogersW, et al. Biological activity of complex ions. Nature. 1952;170(4318):190–191. doi:10.1038/170190a012982853
  • KilahN, MeggersE. Sixty years young: the diverse biological activities of metal polypyridyl complexes pioneered by Francis P. Dwyer. Aust J Chem. 2013;42(9):1325–1332. doi:10.1071/CH12275
  • HaraD, KomatsuH, SonA, et al. Water-soluble phosphorescent ruthenium complex with a fluorescent coumarin unit for ratiometric sensing of oxygen levels in living cells. Bioconjug Chem. 2006;9(4):645–649. doi:10.1021/acs.bioconjchem.5b00093
  • ShiS, GengX, ZhaoJ, et al. Interaction of [Ru(bpy)2(dppz)]2+ with human telomeric DNA: preferential binding to G-quadruplexes over i-motif. Biochimie. 2010;92(4):370–377. doi:10.1016/j.biochi.2010.01.00320096325
  • NovakovaO, KasparkovaJ, VranaO, et al. Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry. 1995;34(38):12369–12378. doi:10.1021/bi00038a0347547981
  • KomorA, BartonJ. The path for metal complexes to a DNA target. Chem Commun. 2013;49(35):3617–3630. doi:10.1039/c3cc00177f
  • AllardyceC, DysonP. Ruthenium in medicine: current clinical uses and future prospects. Platin Metals Rev. 2001;45:62–69.
  • ChenL, ZhangX, ZhangC, et al. Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal Chem. 2011;83(19):7316–7322. doi:10.1021/ac201129d21838323
  • LiF, HarryE, BottomleyA, et al. Dinuclear ruthenium(ii) antimicrobial agents that selectively target polysomes in vivo. Chem Sci. 2014;5(2):685–693. doi:10.1039/C3SC52166D
  • LiF, CollinsG, KeeneF. Ruthenium complexes as antimicrobial agents. Chem Soc Rev. 2015;44(8):2529–2542. doi:10.1039/C4CS00343H25724019
  • DonniciC, AraujoM, OliveiraH, et al. Ruthenium complexes endowed with potent anti-trypanosoma cruzi activity: synthesis, biological characterization and structure–activity relationships. Bioorg Med Chem. 2009;17(14):5038–5043. doi:10.1016/j.bmc.2009.05.07119539479
  • IniguezE, SanchezA, VasquezM, et al. Metal–drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against leishmania major and trypanosoma cruzi and nontoxic to human or murine normal cells. J Biol Inorg Chem. 2013;18(7):779–790. doi:10.1007/s00775-013-1024-223881220
  • GillM, ThomasJ. Ruthenium(II) polypyridyl complexes and DNA–from structural probes to cellular imaging and therapeutics. Chem Soc Rev. 2012;41:3179–3192.22314926
  • FriedmanA, ChambronJ, SauvageJ, et al. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J Am Chem Soc. 1990;112(12):4960–4962. doi:10.1021/ja00168a052
  • ZhangS, DingY, WeiH. Ruthenium polypyridine complexes combined with oligonucleotides for bioanalysis: a review. Molecules. 2014;19(8):11933–11987. doi:10.3390/molecules19081193325116805
  • ForestiR, HammadJ, ClarkJ, et al. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol. 2004;142(3):453–460. doi:10.1038/sj.bjp.070582515148243
  • TenhunenR, MarverH, SchmidR. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61(2):748–755. doi:10.1073/pnas.61.2.7484386763
  • MannB. CO-releasing molecules: a personal view. Organometallics. 2012;31(16):5728–5735. doi:10.1021/om300364a
  • ClarkJ, NaughtonP, ShureyS, et al. Cardioprotective actions by a water-soluble carbon monoxide–releasing molecule. Circ Res. 2003;93(2):e2–e8. doi:10.1161/01.RES.0000084381.86567.0812842916
  • WangP, LiuH, ZhaoQ, et al. Syntheses and evaluation of drug-like properties of CO-releasing molecules containing ruthenium and group 6 metal. Eur J Med Chem. 2014;74:199–215. doi:10.1016/j.ejmech.2013.12.04124463436
  • InabaH, FujitaK, UenoT. Design of biomaterials for intracellular delivery of carbon monoxide. Biomater Sci. 2015;3(11):1423–1438. doi:10.1039/C5BM00210A26252321
  • NguyenD, BoyerC. Macromolecular and inorganic nanomaterials scaffolds for carbon monoxide delivery: recent developments and future trends. ACS Biomater Sci Eng. 2015;1(10):895–913. doi:10.1021/acsbiomaterials.5b00230
  • Troian-GautierL, MoucheronC. RutheniumII complexes bearing fused polycyclic ligands: from fundamental aspects to potential applications. Molecules. 2014;19(4):5028–5087. doi:10.3390/molecules1904502824759069
  • ValenteA, GarciaM. Syntheses of macromolecular ruthenium compounds: a new approach for the search of anticancer drugs. Inorganics. 2014;2(1):96–114. doi:10.3390/inorganics2010096
  • SharmaA, GangradeD, BakshiS, et al. Ruthenium complexes: potential candidate for anti-tumour activity. Int J Chem Tech Res. 2014;6:828–837.
  • FrickerS. Metal based drugs: from serendipity to design. Dalton Trans. 2007;36(43):4903–4917. doi:10.1039/b705551j
  • GalanskiM, JakupecM, KepplerB. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12(18):2075–2094. doi:10.2174/092986705463762616101495
  • RosenbergB, VancampL, TroskoJ, et al. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385–386. doi:10.1038/222385a05782119
  • EisenbergerM, HornedoJ, SilvaH, et al. Carboplatin (NSC-241-240): an active platinum analog for the treatment of squamous-cell carcinoma of the head and neck. J Clin Oncol. 1986;4(10):1506–1509. doi:10.1200/JCO.1986.4.10.15063531424
  • ExtraJ, EspieM, CalvoF, et al. Phase I study of oxaliplatin in patients with advanced cancer. Cancer Chemother Pharmacol. 1990;25:299–303.2295116
  • ReedijkJ. Platinum anticancer coordination compounds: study of DNA binding inspires new drug design. Eur J Inorg Chem. 2009;2009(10):1303–1312. doi:10.1002/ejic.200900054
  • WongE, GiandomenicoC. Current status of platinum-based antitumor drugs. Chem Rev. 1999;99:2451–2466.11749486
  • McWhinneyS, GoldbergR, McLeodH. Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther. 2009;8(1):10–16. doi:10.1158/1535-7163.MCT-08-084019139108
  • KarasawaT, SteygerP. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219–227. doi:10.1016/j.toxlet.2015.06.01226101797
  • MiltenburgN, BoogerdW. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev. 2014;40(7):872–882. doi:10.1016/j.ctrv.2014.04.00424830939
  • TruduF, AmatoF, VaňharaP, et al. Coordination compounds in cancer: past, present and perspectives. J Appl Biomed. 2015;13(2):79–103. doi:10.1016/j.jab.2015.03.003
  • Rademaker-LakhaiJ, van den BongardD, PluimD, BeijnenJH, SchellensJH. A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res. 2004;10(11):3717–3727. doi:10.1158/1078-0432.CCR-03-074615173078
  • HartingerC, JakupecaM, Zorbas-SeifriedaS, et al. KP1019, A new redox-active anticancer agent – preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers. 2008;5:2140–2150.18972504
  • TrondlR, HeffeterP, KowolC, et al. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci. 2014;5(8):2925–2932. doi:10.1039/C3SC53243G
  • SmithenDA, YinH, BehMHR, et al. Synthesis and photobiological activity of Ru(II) dyads derived from pyrrole-2-carboxylate thionoesters. Inorg Chem. 2017;56(7):4121–4132. doi:10.1021/acs.inorgchem.7b0007228301148
  • MonroS, ColonKL, YinH, et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem Rev. 2019;119(2):797–828. doi:10.1021/acs.chemrev.8b0021130295467
  • Uss-FinkG. Areneruthenium complexes as anticancer agents. Dalton Trans. 2010;39(7):1673–1688. doi:10.1039/B916860P20449402
  • KostovaI. Ruthenium complexes as anticancer agents. Curr Med Chem. 2006;13(9):1085–1107. doi:10.2174/09298670677636094116611086
  • SavaG, BergamoA, ZorzetbS, et al. Influence of chemical stability on the activity of the antimetastasis ruthenium compound NAMI-A. Eur J Cancer. 2002;38(3):427–435. doi:10.1016/S0959-8049(01)00389-611818210
  • SannaB, DebiddaM, PintusG, et al. The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Arch Biochem Biophys. 2002;403(2):209–218. doi:10.1016/S0003-9861(02)00218-712139970
  • KapitzaS, PongratzM, JakupecM, et al. Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol. 2005;131(2):101–110. doi:10.1007/s00432-004-0617-015503135
  • BergerM, GarzonF, KepplerB, et al. Efficacy of new ruthenium complexes against chemically induced autochthonous colorectal carcinoma in rats. Anticancer Res. 1989;9:761–765.2764521
  • ThompsonDS, WeissGJ, JonesSF, et al. NKP-1339: maximum tolerated dose defined for first-in-human GRP78 targeted agent. J Clin Oncol. 2012;30(15_suppl):abstract#3033. doi:10.1200/jco.2012.30.15_suppl.3033
  • BennettM. Recent advances in the chemistry of arene complexes of ruthenium(0) and ruthenium(II). Coordin Chem Rev. 1997;166:225–254. doi:10.1016/S0010-8545(97)00024-6
  • AngW, DysonP. Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur J Inorg Chem. 2006;20:4003–4018.
  • AngW, CasiniA, SavaG, et al. Organometallic ruthenium-based antitumor compounds with novel modes of action. J Organomet Chem. 2011;696(5):989–998. doi:10.1016/j.jorganchem.2010.11.009
  • ZelonkaR, BairdM. Benzene complexes of ruthenium(II). Can J Chem. 1972;50(18):3063–3072. doi:10.1139/v72-486
  • DaleL, TocherJ, DysonT, et al. Studies on DNA damage and induction of SOS repair by novel multifunctional bioreducible compounds. A metronidazole adduct of a ruthenium-arene compound. Anti-Cancer Drug Des. 1992;7:3–14.
  • DysonP. Systematic design of a targeted organometallic antitumour drug in pre-clinical development. Chimia Int J Chem. 2007;61(11):698–703. doi:10.2533/chimia.2007.698
  • YanY, MelchartM, HabtemariamA, et al. Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun. 2005;41(38):4764–4776. doi:10.1039/b508531b
  • KurzwernhartA, KandiollerW, BachlerS, et al. Structure–activity relationships of targeted Ru II (η6-p-cymene) anticancer complexes with flavonol-derived ligands. J Med Chem. 2012;55(23):10512–10522. doi:10.1021/jm301376a23134291
  • Corte-RealL, MendesF, CoimbraJ, et al. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes. J Biol Inorg Chem. 2014;19(6):853–867. doi:10.1007/s00775-014-1120-y24562604
  • PettinariR, PettinariC, MarchettiF, et al. Arene–ruthenium(II) acylpyrazolonato complexes: apoptosis-promoting effects on human cancer cells. J Med Chem. 2014;57(11):4532–4542. doi:10.1021/jm500458c24793593
  • ChowM, LiconaC, WongD, et al. Discovery and investigation of anticancer ruthenium–arene schiff-base complexes via water-promoted combinatorial three-component assembly. J Med Chem. 2014;57(14):6043–6059. doi:10.1021/jm500455p25023617
  • YellolJ, PérezS, BucetaA, et al. Novel C, N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes as antitumor and antiangiogenic agents: a Structure–Activity Relationship Study. J Med Chem. 2015;58(18):7310–7327. doi:10.1021/acs.jmedchem.5b0119426313136
  • PettinariR, MarchettiF, CondelloF, et al. Ruthenium(II)–arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics. 2014;33(14):3709–3715. doi:10.1021/om500317b
  • RuizMC, KljunJ, TurelI, et al. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer. Metallomics. 2019;11(3):666–675. doi:10.1039/C8MT00369F30839008
  • KljunJ, LeonIE, PersicŠ, et al. Synthesis and biological characterization of organoruthenium complexes with 8-hydroxyquinolines. J Inorg Biochem. 2018;186:187–196. doi:10.1016/j.jinorgbio.2018.05.00929960150
  • CardosoC, LimaM, CheleskiJ, et al. Luminescent ruthenium complexes for theranostic applications. J Med Chem. 2014;57:4906–4915.24831959
  • HuangH, ZhangP, YuB, et al. Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J Med Chem. 2014;57(21):8971–8983. doi:10.1021/jm501095r25313823
  • ZengL, ChenY, HuangH, et al. Cyclometalated ruthenium(II) anthraquinone complexes exhibit strong anticancer activity in hypoxic tumor cells. Chem Eur J. 2015;21:15308–15319.26338207
  • XiaY, ChenQ, QinX, et al. Studies of ruthenium(ii)-2,2′-bisimidazole complexes on binding to G-quadruplex DNA and inducing apoptosis in HeLa cells. New J Chem. 2013;37(11):3706–3715. doi:10.1039/c3nj00542a
  • HanB, JiangG, WangJ, et al. The studies on bioactivity in vitro of ruthenium(ii) polypyridyl complexes towards human lung carcinoma A549 cells. RSC Adv. 2014;4(77):40899–40906. doi:10.1039/C4RA07102F
  • ChenZ, QinQ, QinJ, et al. Water-soluble ruthenium(II) complexes with chiral 4‑(2,3-dihydroxypropyl)-formamide oxoaporphine (FOA): in vitro and in vivo anticancer activity by stabilization of G‑quadruplex DNA, inhibition of telomerase activity, and induction of tumor cell apoptosis. J Med Chem. 2015;58:4771–4789.25988535
  • Ramirez-RiveraS, PizarroS, GallardoM, et al. Anticancer activity of two novel ruthenium compounds in gastric cancer cells. Life Sci. 2018;213:57–65. doi:10.1016/j.lfs.2018.10.02430326218
  • BabakMV, AngWH. Multinuclear organometallic ruthenium-arene complexes for cancer therapy. Met Ions Life Sci. 2018. doi:10.1515/9783110470734-012
  • NotaroA, FreiA, RubbianiR, et al. Ruthenium(II) complex containing a redox-active semiquinonate ligand as a potential chemotherapeutic agent: from synthesis to in vivo studies. J Med Chem. 2020;63(10):5568–5584. doi:10.1021/acs.jmedchem.0c0043132319768
  • XiongK, QianC, YuanY, et al. Necroptosis induced by ruthenium(II) complexes as dual catalytic inhibitors of topoisomerase I/II. Angew Chem Int Ed Engl. 2020;59(38):16631–16637. doi:10.1002/anie.20200608932533618
  • KnollJ, TurroC. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev. 2015;282–283:110–126. doi:10.1016/j.ccr.2014.05.018
  • LiuJ, ZhangC, ReesTW, et al. Harnessing ruthenium(II) as photodynamic agents: encouraging advances in cancer therapy. Coord Chem Rev. 2018;363:17–28. doi:10.1016/j.ccr.2018.03.002
  • ZengL, KuangS, LiG, et al. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. Chem Commun. 2017;53(12):1977–1980. doi:10.1039/C6CC10330H
  • HuangH, YuB, ZhangP, et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew Chem Int Ed. 2015;54(47):14049–14052.
  • HessJ, HuangH, KaiserA, et al. Evaluation of the medicinal potential of two ruthenium(II) polypyridine complexes as one- and two-photon photodynamic therapy photosensitizers. Chem Eur J. 2017;23(41):9888–9896. doi:10.1002/chem.20170139228509422
  • DolmansD, FukumuraD, JainR. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi:10.1038/nrc107112724736
  • BortG, GallavardinT, OgdenD, et al. From one-photon to two-photon probes: “caged” compounds, actuators, and photoswitches. Angew Chem Int Ed. 2013;52(17):4526–4537. doi:10.1002/anie.201204203
  • OgawaK, KobukeY. Recent advances in two-photon photodynamic therapy. Anticancer Agents Med Chem. 2008;8(3):269–279. doi:10.2174/18715200878396186018393786
  • BaskaranR, LeeJ, YangS-G. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22(1):25. doi:10.1186/s40824-018-0140-z30275968
  • WongS, CampbellB, MasseyB, et al. A phase I trial of aminolevulinic acid-photodynamic therapy for treatment of oral leukoplakia. Oral Oncol. 2013;49(9):970–976. doi:10.1016/j.oraloncology.2013.05.01123845699
  • WiegellS, Hæder SdalM, EriksenP, et al. Photodynamic therapy of actinic keratoses with 8% and 16% methyl aminolaevulinate and home-based daylight exposure: a double-blinded randomized clinical trial. Br J Dermatol. 2009;160(6):1308–1314. doi:10.1111/j.1365-2133.2009.09119.x19416257
  • van RixelVHS, MoolenaarGF, SieglerMA, et al. Controlling with light the interaction between trans -tetrapyridyl ruthenium complexes and an oligonucleotide. Dalton Trans. 2018;47(2):507–516. doi:10.1039/C7DT03613B29230469
  • LameijerLN, ErnstD, HopkinsSL, et al. A red-light-activated ruthenium-caged NAMPT inhibitor remains phototoxic in hypoxic cancer cells. Angew Chem Int Ed. 2017;56(38):11549–11553. doi:10.1002/anie.201703890
  • LiA, YadavR, WhiteJK, et al. Illuminating cytochrome P450 binding: ru(ii)-caged inhibitors of CYP17A1. Chem Commun. 2017;53(26):3673–3676. doi:10.1039/C7CC01459G
  • FarrerN, SalassaL, SadlerP. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 2009;38(48):10690–10701. doi:10.1039/b917753a
  • SmithN, SadlerP. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Phil Trans R Soc. 2013;371(1995):20120519. doi:10.1098/rsta.2012.0519
  • MariC, PierrozV, FerraribS, et al. Combination of Ru(ii) complexes and light: new frontiers in cancer therapy. Chem Sci. 2015;6(5):2660–2686. doi:10.1039/C4SC03759F29308166
  • LiuJ, ChenY, LiG, et al. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials. 2015;56:140–153. doi:10.1016/j.biomaterials.2015.04.00225934287
  • ChenY, LeiW, JiangG, et al. Fusion of photodynamic therapy and photoactivated chemotherapy: a novel Ru(ii) arene complex with dual activities of photobinding and photocleavage toward DNA. Dalton Trans. 2014;43(41):15375–15384. doi:10.1039/C4DT01755B25188424
  • HuangH, ZhangP, YuB, et al. Synthesis, characterization and biological evaluation of mixed-ligand ruthenium(ii) complexes for photodynamic therapy. Dalton Trans. 2015;44(39):17335–17345. doi:10.1039/C5DT02081F26387554
  • FreiA, RubbianiR, TubafardS, et al. Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J Med Chem. 2014;57(17):7280–7292. doi:10.1021/jm500566f25121347
  • DelaeyE, van LaarF, de VosD, et al. A comparative study of the photosensitizing characteristics of some cyanine dyes. J Photochem Photobiol B. 2000;55(1):27–36. doi:10.1016/S1011-1344(00)00021-X10877064
  • KargesJ, KuangS, MaschiettoF, et al. Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat Commun. 2020;11:3262. doi:10.1038/s41467-020-16993-032591538
  • KaraounN, RenfrewA. A luminescent ruthenium(ii) complex for light-triggered drug release and live cell imaging. Chem Commun. 2015;51(74):14038–14041. doi:10.1039/C5CC05172J
  • JoshiT, PierrozV, MariC, et al. A bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angew Chem Int Ed. 2014;53(11):2960–2963. doi:10.1002/anie.201309576
  • PierrozV, JoshiT, LeonidovaA, et al. Molecular and cellular characterization of the biological effects of ruthenium(II) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid. J Am Chem Soc. 2012;134(50):20376–20387. doi:10.1021/ja307288s23181418
  • RazaA, ArcherS, FairbanksSD, et al. A dinuclear ruthenium(II) complex excited by near-infrared light through two-photon absorption induces phototoxicity deep within hypoxic regions of melanoma cancer spheroids. J Am Chem Soc. 2020;142(10):4639–4647. doi:10.1021/jacs.9b1131332065521
  • WebbM, WalsbyC. Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(III) complex NAMI-A by interactions with human serum albumin. Dalton Trans. 2011;40(6):1322–1331. doi:10.1039/c0dt01168a21210063
  • CetinbasN, WebbM, DublandJ, et al. Serum-protein interactions with anticancer Ru(III) complexes KP1019 and KP418 characterized by EPR. J Biol Inorg Chem. 2010;15(2):131–145. doi:10.1007/s00775-009-0578-519707803
  • TimerbaevA, HartingerC, AleksenkoS, et al. Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev. 2006;106(6):2224–2248. doi:10.1021/cr040704h16771448
  • MessoriL, VilchezF, VilaplanaR, et al. Binding of antitumor ruthenium(III) complexes to plasma proteins. Met Based Drugs. 2000;7(6):335–342. doi:10.1155/MBD.2000.33518475965
  • AitkenJ, AntonyS, WeekleyC, et al. Distinct cellular fates for KP1019 and NAMI-A determined by X-ray fluorescence imaging of single cells. Metallomics. 2012;4(10):1051–1056. doi:10.1039/c2mt20072d22907648
  • WebbM, ChardR, Al-JoboryY, et al. Pyridine analogues of the antimetastatic Ru(III) complex NAMI-A targeting non-covalent interactions with albumin. Inorg Chem. 2012;51(2):954–966. doi:10.1021/ic202029e22224431
  • BijelicA, TheinerS, KepplerBK, et al. X-ray structure analysis of indazolium trans- [tetrachlorobis(1 H -indazole)ruthenate(III)] (KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. J Med Chem. 2016;59(12):5894–5903. doi:10.1021/acs.jmedchem.6b0060027196130
  • FerraroG, MassaiL, MessoriL, et al. Cisplatin binding to human serum albumin: a Structural Study. Chem Commun. 2015;51(46):9436–9439. doi:10.1039/C5CC01751C
  • GroesslM, TsybinY, HartingerC, et al. Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. J Biol Inorg Chem. 2010;15(5):677–688. doi:10.1007/s00775-010-0635-020213306
  • GroesslM, ZavaO, DysonP. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics. 2011;3:591–599. doi:10.1039/c0mt00101e21399784
  • SantosR, van EldikR, SilvaD. Kinetic and mechanistic studies on reactions of diruthenium(II, III) with biologically relevant reducing agents. Dalton Trans. 2013;42(48):16796–16805. doi:10.1039/c3dt51763b24081178
  • JakupecM, ReisnerE, EichingerA, et al. Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J Med Chem. 2005;48(8):2831–2837. doi:10.1021/jm049074215828821
  • MillisK, WeaverK, RabensteinD. Oxidation/reduction potential of glutathione. J Org Chem. 1993;58(15):4144–4146. doi:10.1021/jo00067a060
  • SchlugaP, HartingerC, EggerA, et al. Redox behavior of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans. 2006;14:1796–1802.
  • TrédanO, GalmariniC, PatelK, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441. doi:10.1093/jnci/djm13517895480
  • BergamoA, SavaG. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 2011;40:7817–7823.21629963
  • ZengL, GuptaP, ChenY, et al. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev. 2017;46:5771–5804.28654103
  • BerndsenRH, WeissA, AbdulUK, et al. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep. 2017;7(1):43005. doi:10.1038/srep4300528223694
  • YusohNA, LeongSW, ChiaSL, et al. Metallointercalator [Ru(dppz) 2 (PIP)] 2+ renders BRCA wild-type triple-negative breast cancer cells hypersensitive to PARP inhibition. ACS Chem Biol. 2020;15(2):378–387. doi:10.1021/acschembio.9b0084331898884
  • WernitznigD, KiakosK, Del FaveroG, et al. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics. 2019;11(6):1044–1048. doi:10.1039/C9MT00051H30942231
  • QinQ-P, WangZ-F, HuangX-L, et al. High in vitro and in vivo tumor-selective novel ruthenium(II) complexes with 3-(2′-Benzimidazolyl)-7-fluoro-coumarin. ACS Med Chem Lett. 2019;10(6):936–940. doi:10.1021/acsmedchemlett.9b0009831223451
  • Mohamed SubarkhanMK, RenL, XieB, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. 2019;10:246–256. doi:10.1016/j.ejmech.2019.06.061
  • AcharyaS, MajiMR, PurkaitK, et al. Synthesis, structure, stability, and inhibition of tubulin polymerization by Ru II – p -cymene complexes of trimethoxyaniline-based schiff bases. Inorg Chem. 2019;58(14):9213–9224. doi:10.1021/acs.inorgchem.9b0085331241921
  • Soldevila‐BarredaJJ, AzmanovaM, Pitto‐BarryA, et al. Preclinical anticancer activity of an electron-deficient organoruthenium(II) complex. Chemmedchem. 2020;15(11):982–987. doi:10.1002/cmdc.20200009632237195
  • Sanz Del OlmoN, Maroto-DiazM, QuintanaS, et al. Heterofunctional ruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. Eur J Med Chem. 2020;207:112695. doi:10.1016/j.ejmech.2020.11269532882608