102
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Pristimerin Inhibits Osteoclast Differentiation and Bone Resorption in vitro and Prevents Ovariectomy-Induced Bone Loss in vivo

, , , ORCID Icon, , , , , & show all
Pages 4189-4203 | Published online: 09 Oct 2020

References

  • ChenX, WangZ, DuanN, ZhuG, SchwarzEM, XieC. Osteoblast-osteoclast interactions. Connect Tissue Res. 2018;59(2):99–107. doi:10.1080/03008207.2017.129008528324674
  • LorenzoJ. The many ways of osteoclast activation. J Clin Invest. 2017;127(7):2530–2532. doi:10.1172/JCI9460628530641
  • PereiraM, PetrettoE, GordonS, BassettJHD, WilliamsGR, BehmoarasJ. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci. 2018;131:11. doi:10.1242/jcs.216267
  • EnsrudKE, CrandallCJ. Osteoporosis. Ann Intern Med. 2017;167(3):Itc17itc32. doi:10.7326/AITC20170801028761958
  • MeunierPJ, RouxC, OrtolaniS, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporosis International. 2009;20(10):1663–1673. doi:10.1007/s00198-008-0825-619153678
  • CompstonJE, McClungMR, LeslieWD. Osteoporosis. Lancet. 2019;393(10169):364–376. doi:10.1016/S0140-6736(18)32112-330696576
  • KennelKA, DrakeMT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84(7):632–637; quiz 638. doi:10.1016/S0025-6196(11)60752-0
  • Ikebuchi Y, Aoki S, Honma M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. doi:10.1038/s41586-018-0482-730185903
  • Cao X. RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Research. 2018;6(35).
  • A-FN, et al. The role of osteoclast-associated receptor in osteoimmunology. J Immunol. 2011;186(1):13–18.21172874
  • Sobacchi C, Schulz A, Coxon F, Villa A, Helfrich M. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–536. doi:10.1038/nrendo.2013.13723877423
  • Lu Z, Jin Y, Chen C, Li J, Cao Q, Pan J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-kappaB signaling and depleting Bcr-Abl. Mol Cancer. 2010;9:112. doi:10.1186/1476-4598-9-11220482842
  • JYB, MJK, DYE, et al. Reactive oxygen species-dependent activation of Bax and poly (ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol. 2009;76(4):734–744. doi:10.1124/mol.109.05625919574249
  • H YKRL-P, et al. Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem. 2008;103(1):234–244. doi:10.1002/jcb.2139917541980
  • Liang J, Yuan S, Wang X, et al. Attenuation of pristimerin on TNF-α-induced endothelial inflammation. Int Immunopharmacol. 2020;82:106326. doi:10.1016/j.intimp.2020.10632632135490
  • LNW, et al. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo. J Integr Med. 2014;12(1):20–34. doi:10.1016/S2095-4964(14)60003-024461592
  • E-ADS, E-HKM, et al. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res. 2019;11:47–61.30588110
  • SunJ, XuH, ZhaoL, et al. Induction of cell-cycle arrest and apoptosis in human cholangiocarcinoma cells by pristimerin. J Cell Biochem. 2019.
  • ShaabanA, El-KashefD, HamedM, El-AgamyD. Protective effect of pristimerin against LPS-induced acute lung injury in mice. Int Immunopharmacol. 2018;59:31–39. doi:10.1016/j.intimp.2018.03.03329621734
  • CevatemreB, ErkısaM, AztopalN, et al. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autophagy in breast cancer. Pharmacol Res. 2018;129:500–514. doi:10.1016/j.phrs.2017.11.02729197639
  • ZhaoH, WangC, LuB, et al. Pristimerin triggers AIF-dependent programmed necrosis in glioma cells via activation of JNK. Cancer Lett. 2016;374(1):136–148. doi:10.1016/j.canlet.2016.01.05526854718
  • Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Molecular Med. 2005;83(3):170–179. doi:10.1007/s00109-004-0612-6
  • LuX, HeW, YangW, et al. Dual effects of baicalin on osteoclast differentiation and bone resorption. J Cell Mol Med. 2018;22(10):5029–5039. doi:10.1111/jcmm.1378530010244
  • Tian K, Su Y, Ding J, et al. Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption. Life Sci. 2020;244:117336. doi:10.1016/j.lfs.2020.11733631972206
  • JHK. Signaling Pathways in Osteoclast Differentiation. Chonnam Med J. 2016;52(1):12–17. doi:10.4068/cmj.2016.52.1.1226865996
  • Matsuo K, Owens J, Tonko M, Elliott C, Chambers T, Wagner E. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet. 2000;24(2):184–187. doi:10.1038/7285510655067
  • EFW. Fos/AP-1 proteins in bone and the immune system. Immunol Rev. 2005;208:126–140. doi:10.1111/j.0105-2896.2005.00332.x16313345
  • JMK, YSL, YSK, et al. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Mineral Res. 2006;21(7):1003–1011.
  • PengjamY, MadhyasthaH, MadhyasthaR, YamaguchiY, NakajimaY, MaruyamaM. Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: involvement of MAPK mediated Wnt and Bmp signaling. Biomol Ther (Seoul). 2016;24(2):123–131. doi:10.4062/biomolther.2015.10626869456
  • LiX, UdagawaN, ItohK, et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 2002;143(8):3105–3113. doi:10.1210/endo.143.8.895412130576
  • HeY, StaserK, RhodesSD, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011;6(9):e24780. doi:10.1371/journal.pone.002478021961044
  • Zhang Q, Lenardo M, Baltimore D. 30 Years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 2017;168:37–57. doi:10.1016/j.cell.2016.12.01228086098
  • A-AY. NF-κB signaling and bone resorption. Osteoporosis International. 2013;24(9):2377–2386. doi:10.1007/s00198-013-2313-x23468073
  • Matsumoto T, Nagase Y, Iwasawa M, et al. Distinguishing the proapoptotic and antiresorptive functions of risedronate in murine osteoclasts: role of the Akt pathway and the ERK/Bim axis. Arthritis Rheum. 2011;63(12):3908–3917. doi:10.1002/art.3064621898348
  • Gingery A, Bradley E, Shaw A, Oursler M. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem. 2003;89(1):165–179. doi:10.1002/jcb.1050312682917
  • AJW, RJD. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Molecular Med. 1996;74(10):589–607. doi:10.1007/s001090050063
  • BCJ, JHK. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone. 2017;95:33–40. doi:10.1016/j.bone.2016.11.00527829167
  • Yamashita T, Yao Z, Li F, et al. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 2007;282(25):18245–18253. doi:10.1074/jbc.M61070120017485464
  • Song I, Kim J, Kim K, Jin H, Youn B, Kim N. Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett. 2009;583(14):2435–2440. doi:10.1016/j.febslet.2009.06.04719576893
  • Zhang C, Dou C, Xu J, Dong S. DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J Cell Physiol. 2014;229(10):1330–1335. doi:10.1002/jcp.2455324420845
  • Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202(3):345–351. doi:10.1084/jem.2005064516061724
  • Qi M, Zhang L, Ma Y, et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics. 2017;7(18):4498–4516. doi:10.7150/thno.1794929158841