173
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Nα-1, 3-Benzenedicarbonyl-Bis-(Amino Acid) and Dipeptide Candidates: Synthesis, Cytotoxic, Antimicrobial and Molecular Docking Investigation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1315-1332 | Published online: 25 Mar 2021

References

  • HancockRE, HaneyEF, GillEE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321–334. doi:10.1038/nri.2016.2927087664
  • RolstonKV. The spectrum of pulmonary infections in cancer patients. Curr Opin Oncol. 2001;13:218–223. doi:10.1097/00001622-200107000-0000211429477
  • GasparD, VeigaAS, CastanhoMA. From antimicrobial to anticancer peptides. Review Front Microbiol. 2013;4:294. doi:10.3389/fmicb.2013.0029424101917
  • FelícioMR, SilvaON, GonçalvesS, SantosNC, FrancoOL. Peptides with dual antimicrobial and anticancer activities. Front Chem. 2017;5:1–9. doi:10.3389/fchem.2017.0000528154813
  • Abo-GhaliaMH, MoustafaGO, AlwasidiAS, NaglahAM. Cytotoxic Investigation of Isophthaloyl Cyclopenta peptides. Lat Am J Pharm. 2017;36:1957–1962.
  • MoustafaGO, El-SawyAA, Abo-GhaliaMH. Synthesis of novel cyclopeptide candidates: i-cyclo-[Nα-isophthaloyl-bis-(Glycine-amino acid)-L-lysine] derivatives with expected anticancer activity. Egypt J Chem. 2013;5:473–494.
  • HassanAS, MoustafaGO, AwadHM. Synthesis and in vitro anticancer activity of pyrazolo [1, 5-a] pyrimidines and pyrazolo [3, 4-d][1, 2, 3] triazines. Synth Commun. 2017;47(21):1963–1972. doi:10.1080/00397911.2017.1358368
  • AmrAE, Abo-GhaliaMH, MoustafaGO, Al-OmarMA, NossierES, ElsayedEA. Design, synthesis and docking studies of novel macrocyclic pentapeptides as anticancer multi-targeted kinase inhibitors. Molecules. 2018;23(10):10. doi:10.3390/molecules23102416
  • MoustafaGO, YounisA, Al-YousefSA, MahmoudSY. Design, synthesis of novel cyclic pentapeptide derivatives based on 1, 2-benzenedicarbonyl chloride with expected anticancer activity. J Comput Theor Nanosci. 2019;16(5–6):1733–1739. doi:10.1166/jctn.2019.8114
  • KassemAF, MoustafaGO, NossierES, et al. In vitro anticancer potentiality and molecular modelling study of novel amino acid derivatives based on N 1, N 3-bis-(1-hydrazinyl-1-oxopropan-2-yl) isophthalamide. J Enzyme Inhib Med Chem. 2019;34(1):1247–1258. doi:10.1080/14756366.2019.161339031286782
  • MohamedFH, ShalabyAM, SolimanHA, et al. Design, synthesis and molecular docking studies of novel cyclic pentapeptides based on phthaloyl chloride with expected anticancer activity. Egypt J Chem. 2020;63(5):1723–1736. doi:10.21608/EJCHEM.2019.18452.2137
  • Abo-GhaliaMH, MoustafaGO, AmrAE, NaglahAM, ElsayedEA, BakheitAH. Anticancer activities and 3D-QSAR studies of some new synthesized macrocyclic heptapeptide derivatives. Molecules. 2020;25(5):1253. doi:10.3390/molecules25051253
  • KalmouchA, RadwanMAA, OmranMM, SharakyM, MoustafaGO. Synthesis of novel 2, 3ʹ-bipyrrole derivatives from chalcone and amino acids as antitumor agents. Egypt J Chem. 2020;63(11):4409–4421.
  • MoustafaGO, Al-WasidiAS, NaglahAM, RefatMS. Isolation and synthesis of dibenzofuran derivatives possessing anticancer activities: a review. Egyptian J Chem. 2020;63(6):2355–2367. doi:10.21608/ejchem.2020.21937.2310
  • MoustafaGO. Therapeutic potentials of cyclic peptides as promising anticancer drugs. Egyptian J Chem. 2021;64(4):2160–2172.
  • ElhenawyAA, Al-HarbiLM, MoustafaGO, El-GazzarMA, Abdel-RahmanRF, SalimAE. Synthesis, comparative docking, and pharmacological activity of naproxen amino acid derivatives as possible anti-inflammatory and analgesic agents. Drug Des Devel Ther. 2019;13:1773. doi:10.2147/DDDT.S196276
  • MoustafaGO, KhalafH, NaglahA, et al. Synthesis, molecular docking studies, in vitro antimicrobial and antifungal activities of novel dipeptide derivatives based on N-(2-(2-hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide. Molecules. 2018;23:761. doi:10.3390/molecules23040761
  • NaglahAM, MoustafaGO, Al-OmarMA, Al-SalemHAS, HozzeinWN. Synthesis, characterization and in vitro antimicrobial investigation of novel amino acids and dipeptides based on dibenzofuran-2-sulfonyl-chloride. J Comput Theor Nanosci. 2017;14:3183–3190. doi:10.1166/jctn.2017.6613
  • Al-SalemHAS, NaglahAM, MoustafaGO, MahmoudAZ, Al-OmarMA. Synthesis of novel tripeptides based on Dibenzofuran-2-Sulfonyl-[Aromatic and Hydroxy Aromatic Residues]: towards Antimicrobial and Antifungal Agents. J Comput Theor Nanosci. 2017;14:3958–3966. doi:10.1166/jctn.2017.6702
  • HassanAS, MoustafaGO, AskarAA, NaglahAM, Al-OmarMA. Synthesis and antibacterial evaluation of fused pyrazoles and Schiff bases. Synth Commun. 2018;48(21):2761–2772. doi:10.1080/00397911.2018.1524492
  • HassanAS, AskarAA, NossierES, NaglahAM, MoustafaGO, Al-OmarMA. Antibacterial evaluation, in silico characters and molecular docking of schiff bases derived from 5-aminopyrazoles. Molecules. 2019;24(17):3130. doi:10.3390/molecules24173130
  • HasaninMS, MoustafaGO. New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. Int J Biol Macromol. 2019;144:441–448. doi:10.1016/j.ijbiomac.2019.12.13331862374
  • ElsherifMA, HassanAS, MoustafaGO, AwadHM, MorsyNM. Antimicrobial evaluation and molecular properties prediction of pyrazolines incorporating benzofuran and pyrazole moieties. Bull Chem Soc Ethiop. 2020;10(02):037–043. doi:10.7324/JAPS.2020.102006
  • HassanAS, MoustafaGO, MorsyNM, AbdouAM, HafezTS. Design, synthesis and antibacterial activity of N-aryl-3-(arylamino)-5-(((5-substituted furan-2-yl)methylene)amino)-1H-pyrazole-4-carboxamide as Nitrofurantoin® analogues. Egypt J Chem. 2020;63(11):4485–4497.
  • KhalafHS, NaglahAM, Al-OmarMA, AwadHM, BakheitAH, BakheitAH. Synthesis, docking, computational studies, and antimicrobial evaluations of new dipeptide derivatives based on nicotinoylglycylglycine hydrazide. Molecules. 2020;25(16):3589. doi:10.3390/molecules25163589
  • Al-WasidiAS, NaglahAM, KalmouchA, AdamAMA, RefatMS, MoustafaGO. Preparation of Cr2O3, MnO2, Fe2O3, NiO, CuO, and ZnO oxides using their glycine complexes as precursors for in situ thermal decomposition. Egyptian J Chem. 2020;63(3):1109–1118.
  • Al-WasidiAS, NaglahAM, RefatMS, El-MegharbelSM, KalmouchA, MoustafaGO. Synthesis, spectroscopic characterization and antimicrobial studies of Mn(II), Co(II), Ni(II), Cr(III) and Fe(III) melatonin drug complexes. Egyptian J Chem. 2020;63(4):1469–1481.
  • Al-Wasidi AS, Wafeek M, Abd El-Ghaffar HA., Naglah A.M., Kalmouch A., Hamed M., Moustafa G.O. Effect of Density on Growth Hormone and Some Physiological Parameters and its Relation to Growth Performance. Egyptian J Chem. 2020;63(4):1575–1584.
  • ImtiajA, JayasingheC, LeeGW, LeeTS. Antibacterial and antifungal activities of stereumostrea, an inedible wild mushroom. Mycobiology. 2007;35:210–214. doi:10.4489/MYCO.2007.35.4.21024015099
  • El-FekyAM, ElbatanonyMM, MounierMM. Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Viciafaba peels. Egypt J Basic Applied Sci. 2018;5(4):258–264. doi:10.1016/j.ejbas.2018.11.001
  • MosmannT. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65(1):55–63. doi:10.1016/0022-1759(83)90303-4
  • BarbareschiM, CaffoO, VeroneseS, et al. Bcl-2 and p53 expression in node-negative breast carcinoma: a study with long-term follow-up. Hum Pathol. 1996;27:1149–1155. doi:10.1016/S0046-8177(96)90307-X8912823
  • LiliomK, LehotzkyA, MolnarA, OvadiJ. Characterization of tubulin-alkaloid interactions by enzyme-linked immunosorbent assay. Anal Biochem. 1995;228(1):18–26. doi:10.1006/abio.1995.13098572281
  • ThomasMD, McIntoshGG, AndersonJJ, et al. Novel quantitative immunoassay system for p53 using antibodies selected for optimum designation of p53 status. J Clin Pathol. 1997;50(2):143–147. doi:10.1136/jcp.50.2.1439155696
  • GellibertF, WoolvenJ, FouchetMH, MathewsN, GoodlandH, LovegroveV. Identification of 1, 5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. J Med Chem. 2004;47(18):4494–4506. doi:10.1021/jm040024715317461
  • PodustLM, PoulosTL, WatermanMR. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci, 2001;98(6):3068–3073.11248033
  • Chatzou M, Magis C, Chang J, et al. Multiple sequence alignment modeling: methods and applications. Briefings in Bioinformatics. 2016;17(6):1009–1023. doi:10.1093/bib/bbv099
  • KumarA, SasmalD, JadavSS, SharmaN. Mechanism of immunoprotective effects of curcumin in DLM-induced thymic apoptosis and altered immune function: an in silico and in vitro study. Immunopharmacol Immunotoxicol. 2015;37(6):488–498. doi:10.3109/08923973.2015.109100426471321
  • RanaR, SharmaR, KumarA. Repurposing of Fluvastatin against Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: an In silico and In vitro study. Curr Mol Med. 2019;19(7):506–524. doi:10.2174/156652401966619052009464431109273
  • JacobKS, GangulyS, KumarP, PoddarR, KumarA. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy. J Biomol Struct Dyn. 2017;35(7):1446–1463. doi:10.1080/07391102.2016.118538027142238
  • KantK, LalUR, KumarA, GhoshM. A merged molecular docking, ADME-T and dynamics approaches towards the genus of Arisaema as herpes simplex virus type 1 and type 2 inhibitors. Comput Biol Chem. 2019;78:217–226. doi:10.1016/j.compbiolchem.2018.12.00530579134
  • NavyashreeV, KantK, KumarA. Natural chemical entities from Arisaema Genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. J Biomol Struct Dyn. 2020;1–13.
  • GuptaM, SharmaR, KumarA. Comparative potential of simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: an in silico and in vitro study. Orient Pharm Exp Med. 2019;19(3):259–275. doi:10.1007/s13596-019-00359-z
  • Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. 1996.
  • Chemical Computing Group Inc. Molecular Operating Environment (MOE). Version 2015.10. Montreal, Quebec, Canada: Chemical Computing Group Inc;2016
  • DaleGE, KostrewaD, GsellB, SteigerM, D’ArcyA. Crystal engineering: deletion mutagenesis of the 24 kDa fragment of the DNA gyrase B subunit from Staphylococcus aureus. Acta Crystallographica D Biol Crystallography. 1999;55(9):1626–1629. doi:10.1107/S0907444999008227
  • FrischMJ, TrucksGW, SchlegelHB, et al. Gaussian 09, Revision D. 01, Gaussian, Inc. Wellingford CT. Gaussian. Inc, Wellingford CT Google Scholar; 2013.
  • ElhenawyAA, Al-HarbiL, El-GazzarM, KhowdiaryMM, MoustfaA. Synthesis, molecular properties and comparative docking and QSAR of new 2-(7-hydroxy-2-oxo-2H-chromen-4-yl) acetic acid derivatives as possible anticancer agents. J Spectrochimica Acta Part A. 2019;218:248–262. doi:10.1016/j.saa.2019.02.074
  • LipinskiCA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.00724981612
  • TsaiHF, ChangYC, WashburnRG, WheelerMH, Kwon-ChungKJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol. 1998;180:3031–3038. doi:10.1128/JB.180.12.3031-3038.19989620950
  • AldredKJ, McPhersonSA, TurnboughCL, KernsRJ, OsheroffN. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res. 2013;41(8):4628–4639. doi:10.1093/nar/gkt12423460203
  • JungWK, KooHC, KimKW, ShinS, KimSH, ParkYH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178. doi:10.1128/AEM.02001-0718245232
  • FengQL, WuJ, ChenGQ, CuiFZ, KimTN, KimJO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-311033548
  • AmroNA, KotraLP, Wadu-MesthrigeK, BulychevA, MobasheryS, LiuGY. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16(6):2789–2796. doi:10.1021/la991013x
  • PellieuxC, DewildeA, PierlotC, AubryJM. [18] Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods Enzymol. 2000;319:197–207.10907511
  • YangH, LouC, SunL, et al. Admet SAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35:1067–1069. doi:10.1093/bioinformatics/bty70730165565
  • ClarkDE, PickettSD. Computational methods for the prediction of ‘drug-likeness‘. Drug Discov Today. 2000;5(2):49–58. doi:10.1016/S1359-6446(99)01451-8
  • AminML. P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights. 2013;7:27–34. doi:10.4137/DTI.S1251924023511
  • BentoA, GaultonA, HerseyA, BellisL, ChambersJ, DaviesM. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(D1):D1083–D1090. doi:10.1093/nar/gkt103124214965
  • AmesBN, McCannJ, YamasakiE. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975;31(6):347–364. doi:10.1016/0165-1161(75)90046-1768755
  • MortelmansK, ZeigerE. The Ames Salmonella/microsome mutagenicity assay”. Mutat Res. 2000;455(1–2):29–60. doi:10.1016/S0027-5107(00)00064-611113466
  • WitchelHJ, HancoxJC. Familial and acquired long QT syndrome and the cardiac rapid delayed rectifier potassium current. Clin Exp Pharmacol Physiol. 2000;27(10):753–766. doi:10.1046/j.1440-1681.2000.03337.x11022966
  • BalakumarR, SivaprakasamE, KavithaD, SridharS, KumarJS. Antibacterial and antifungal activity of fruit bodies of Phellinus mushroom extract. Int J Biosci. 2011;1:72–77.
  • BatranRZ, KassemAF, AbbasEM, ElseginySA, MounierMM. Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells. Bioorg Med Chem. 2018;26(12):3474–3490. doi:10.1016/j.bmc.2018.05.02229793751