118
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Beneficial Effects of Echinacoside on Diabetic Cardiomyopathy in Diabetic Db/Db Mice

&
Pages 5575-5587 | Published online: 18 Dec 2020

References

  • BautersC, LamblinN, Mc FaddenEP, Van BelleE, MillaireA, de GrooteP. Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol. 2003;1(8):1–2. doi:10.1186/1475-2840-2-1
  • TateM, GrieveDJ, RitchieRH. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci. 2017;131(10):897–915. doi:10.1042/CS20160491
  • KhanH, AnkerSD, JanuzziJJ, et al. Heart failure epidemiology in patients with diabetes mellitus without coronary heart disease. J Card Fail. 2019;25(2):78–86. doi:10.1016/j.cardfail.2018.10.01530423457
  • SheilaK, PatelB. The CTGF gene −945 G/C polymorphism is not associated with cardiac or kidney complications in subjects with type 2 diabetes. Cardiovasc Diabetol. 2012;1(11):42.
  • AlonsoN, MolinerP, MauricioD. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv Exp Med Biol. 2018;1067:197–217.28980272
  • JiaG, Whaley-ConnellA, SowersJR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–28. doi:10.1007/s00125-017-4390-428776083
  • BellD, GoncalvesE. Heart failure in the patient with diabetes: epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab. 2019;6(21):1277–1290. doi:10.1111/dom.13652
  • DongC, ZhouH, ShenC, et al. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome. World J Diabetes. 2015;6(4):654–661. doi:10.4239/wjd.v6.i4.65425987964
  • KallwitzER, McLachlanA, CotlerSJ. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J Gastroenterol. 2008;14(1):22–28. doi:10.3748/wjg.14.2218176957
  • IpE, GeoffreyC, FarrellM, et al. Central role of PPARα‐dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38(1):123–132. doi:10.1053/jhep.2003.5030712829994
  • WattsGF, BarrettPHR, JiJ. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 2003;52(3):803–811. doi:10.2337/diabetes.52.3.80312606523
  • LiF, PattersonAD, KrauszKW, et al. Metabolomics reveals an essential role for peroxisome proliferator-activated receptor α in bile acid homeostasis. J Lipid Res. 2012;53(8):1625–1635. doi:10.1194/jlr.M02743322665165
  • FraulobFJ, Souza-MelloV, AguilaAM, et al. Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci. 2012;123(4):259–270. doi:10.1042/CS20110373
  • GorePN, BadarV, HardasM, BansodeV. Comparative effect of telmisartan vs lisinopril on blood pressure in patients of metabolic syndrome. Endocr Metab Immune Disord Drug Targets. 2015;15(1):64–70. doi:10.2174/187153031466614112815415225440999
  • EverettL, GalliA, CrabbD. The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease. Liver. 2000;20(3):191–199. doi:10.1034/j.1600-0676.2000.020003191.x10902968
  • SongS, ZhangL, CaoJ, et al. Characterization of metabolic pathways and absorption of sea cucumber saponins, holothurin A and echinoside A, in vitro and in vivo. J Food Sci. 2017;82(8):1961–1967. doi:10.1111/1750-3841.1375928732111
  • WuY, LiL, WenT, et al. Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology. 2007;232(1–2):50–56. doi:10.1016/j.tox.2006.12.01317222497
  • XiongWT, GuL, WangC, et al. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J Ethnopharmacol. 2013;150(3):935–945. doi:10.1016/j.jep.2013.09.02724095831
  • Hiroshi ShimodaJT, TanakaJ, TakaharaY, TakemotoK, ShanS-J, SuM-H. The hypocholesterolemic effects of istanche tubulosa extract, a chinese traditional crude medicine, in mice. Am J Chin Med. 2009;37(06):1125–1138. doi:10.1142/S0192415X0900754519938221
  • TangF, HaoY, ZhangX, et al. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des Devel Ther. 2017;11:2813–2826. doi:10.2147/DDDT.S143805
  • XieH, ChungDY, KuraS, et al. Differential effects of anesthetics on resting state functional connectivity in the mouse. J Cereb Blood Flow Metab. 2020;40(4):875–884. doi:10.1177/0271678X1984712331092086
  • EWestermeierF, ERiquelmeJ, EPavezM, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol. 2016;7:125.27148064
  • QiL, QinJ, LiG, et al. Exploration of α-glucosidase inhibitor with anti-diabetic effects from novel bio-resources. Global Chinese Health (Functional) Food Technology Conference; 2013.
  • KurodaT, HirotaH, FujioY. Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) delta independent of the IP receptor signaling pathway. J Mol Cell Cardiol. 2007;43(1):54–62. doi:10.1016/j.yjmcc.2007.04.00317540403
  • RublerS, DlugashJ, YuceogluYZ, KumralT, BranwoodAW, GrishmanA. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602. doi:10.1016/0002-9149(72)90595-44263660
  • GilcaGE, StefanescuG, BadulescuO, TanaseD-M, BararuI, CiocoiuM. Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J Diabetes Res. 2017;5:1–7. doi:10.1155/2017/1310265
  • SungMM, HamzaSM, DyckJRB. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Sign. 2015;22(17):1606–1630. doi:10.1089/ars.2015.6305
  • FillmoreN, MoriJ, LopaschukGD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol. 2014;171(8):2080–2090. doi:10.1111/bph.1247524147975
  • JansenMA, ShenH, ZhangL, et al. Energy requirements for the Na+ gradient in the oxygenated isolated heart: effect of changing the free energy of ATP hydrolysis. Am J Physiol. 2003;285(6):2437–2445.
  • DaifenH. Expression of genes participating in regulation of fatty acid and glucose utilization and energy metabolism in developing rat hearts. Am J Physiol. 2004;287(5):2035–2042.
  • van de Weijer TinekeB, PatrickS. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res. 2011;92(1):54–62.
  • ShaherinB, BalachandranM, HwanST, et al. A molecular dynamics approach to explore the intramolecular signal transduction of PPAR-α. Int J Mol Sci. 2019;20(7).
  • ChenW, XiaY, ZhaoX, et al. The critical role of Astragalus polysaccharides for the improvement of PPARalpha correction of PPRAalpha-mediated lipotoxicity in diabetic cardiomyopathy. PLoS One. 2012;7(10):e45541. doi:10.1371/journal.pone.004554123049681
  • WuL, WangK, WangW, et al. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARα pathway. Aging Cell. 2018;17(4):e12763. doi:10.1111/acel.1276329659121