186
Views
13
CrossRef citations to date
0
Altmetric
Review

Indole: The After Next Scaffold of Antiplasmodial Agents?

ORCID Icon, , &
Pages 4855-4867 | Published online: 11 Nov 2020

References

  • World malaria report 2019. 2019 Available from: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019. Accessed 1013, 2020.
  • World malaria report 2018. 2019 Available from: https://www.mmv.org/newsroom/publications/world-malaria-report-2018. Accessed 1013, 2020.
  • KumarS, SinghRK, PatialB, et al. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J Enzyme Inhib Med Chem. 2016;31(2):173–186. doi:10.3109/14756366.2015.1016513
  • KumarS, BhardwajTR, PrasadDN, et al. Drug targets for resistant malaria: historic to future perspectives. Biomed Pharmacother. 2018;104:8–27. doi:10.1016/j.biopha.2018.05.00929758416
  • EspinozaJL. Malaria resurgence in the Americas: an underestimated threat. Pathogens. 2019;8(1):11. doi:10.3390/pathogens8010011
  • ConradMD, RosenthalPJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19(10):e338–e351. doi:10.1016/S1473-3099(19)30261-031375467
  • SururAS, FekaduA, MakonnenE, et al. Challenges and opportunities for drug discovery in developing countries: the example of cutaneous leishmaniasis. ACS Med Chem Lett. 2020. doi:10.1021/acsmedchemlett.0c00446
  • AchanJ, TalisunaAO, ErhartA, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10(1). doi:10.1186/1475-2875-10-144
  • FidockDA, RosenthalPJ, CroftSL, et al. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3(6):509–520. doi:10.1038/nrd141615173840
  • SureshN, HaldarK. Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Curr Opin Pharmacol. 2018;42:46–54. doi:10.1016/j.coph.2018.06.00330077118
  • TseEG, KorsikM, ToddMH. The past, present and future of anti-malarial medicines. Malar J. 2019;18(1). doi:10.1186/s12936-019-2724-z
  • SururAS, SchuligL, LinkA. Interconnection of sulfides and sulfoxides in medicinal chemistry. Arch Pharm Chem Life Sci. 2019. doi:10.1002/ardp.201800248
  • KalariaPN, KaradSC, RavalDK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem. 2018;158:917–936. doi:10.1016/j.ejmech.2018.08.04030261467
  • KumariA, SinghRK. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives. Bioorg Chem. 2019;89:103021. doi:10.1016/j.bioorg.2019.10302131176854
  • BiamonteMA, WannerJ, Le RochKG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett. 2013;23(10):2829–2843. doi:10.1016/j.bmcl.2013.03.06723587422
  • FrederichM, TitsM, AngenotL. Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg. 2008;102(1):11–19. doi:10.1016/j.trstmh.2007.10.00218035385
  • SantosSA, LukensAK, CoelhoL, et al. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. Eur J Med Chem. 2015;102:320–333. doi:10.1016/j.ejmech.2015.07.04726295174
  • TajuddeenN, Van HeerdenFR. Antiplasmodial natural products: an update. Malar J. 2019;18. doi:10.1186/s12936-019-3026-1
  • FernandezLS, BuchananMS, CarrollAR, et al. Flinderoles A−C: antimalarial bis-indole alkaloids from Flindersia species. Org Lett. 2009;11(2):329–332. doi:10.1021/ol802506n19090698
  • FernandezLS, SykesML, AndrewsKT, et al. Antiparasitic activity of alkaloids from plant species of Papua New Guinea and Australia. Int J Antimicrob Agents. 2010;36(3):275–279. doi:10.1016/j.ijantimicag.2010.05.00820580535
  • VallakatiR, MayJA. Biomimetic synthesis of the antimalarial flindersial alkaloids. J Am Chem Soc. 2012;134(16):6936–6939. doi:10.1021/ja301387k22489830
  • YeungBKS, ZouB, RottmannM, et al. Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J Med Chem. 2010;53(14):5155–5164. doi:10.1021/jm100410f20568778
  • RottmannM, McNamaraC, YeungBK, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–1180. doi:10.1126/science.119322520813948
  • WhiteNJ, PukrittayakameeS, PhyoAP, et al. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med. 2014;371(5):403–410. doi:10.1056/NEJMoa131586025075833
  • MuregiFW, IshihA. Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res. 2010;71:20–32.21399701
  • RajR, BiotC, Carrere-KremerS, et al. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation. Chem Biol Drug Des. 2014;83(5):622–629. doi:10.1111/cbdd.1227324341638
  • RajR, GutJ, RosenthalPJ, et al. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: synthesis and antimalarial evaluation. Bioorg Med Chem Lett. 2014;24(3):756–759. doi:10.1016/j.bmcl.2013.12.10924424135
  • RajR, SinghP, SinghP, et al. Azide-alkyne cycloaddition en route to 1 H -1,2,3-triazole-tetHered 7-cHloroquinoline-isatin cHimeras: syntHesis and antimalarial evaluation. Eur J Med Chem. 2013;62:590–596. doi:10.1016/j.ejmech.2013.01.03223434528
  • TeguhSC, KlonisN, DuffyS, et al. Novel conjugated quinoline–indoles compromise Plasmodium falciparum mitochondrial function and show promising antimalarial activity. J Med Chem. 2013;56(15):6200–6215. doi:10.1021/jm400656s23837878
  • SinghTP, SinghOM. Recent progress in the biological activities of indole and indole alkaloids. Mini Rev Med Chem. 2018;18:9–25. doi:10.2174/138955751766617080712320128782480
  • Rocha e SilvaLF, MontoiaA, AmorimRC, et al. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine. 2012;20(1):71–76. doi:10.1016/j.phymed.2012.09.00823092722
  • LavradoJ, PauloA, GutJG, RosenthalJ, MoreiraR. Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: synthesis, antiplasmodial activity, and cytotoxicity. Bioorg Med Chem Lett. 2008;18(4):1378–1381. doi:10.1016/j.bmcl.2008.01.01518207399
  • LisgartenJN, CollM, PortugalJ, et al. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat Struct Biol. 2019;18(1):57–60. doi:10.1038/nsb729
  • PotterBS, LisgartenJN, PittsJE, et al. X-ray crystallographic structure of the potent antiplasmodial compound 2,7-dibromocryptolepine acetic acid solvate. J Chem Crystallogr. 2008;38(11):821–825. doi:10.1007/s10870-008-9398-7
  • OnambeleLA, RieplH, FischerR, et al. Synthesis and evaluation of the antiplasmodial activity of tryptanthrin derivatives. Int J Parasitol Drugs Drug Resist. 2015;5(2):48–57. doi:10.1016/j.ijpddr.2015.03.00225949928
  • UrgaonkarS, CorteseJF, BarkerRH, et al. A concise silylamine approach to 2-amino-3-hydroxy-indoles with potent in vivo antimalaria activity. Org Lett. 2010;36(18):3998–4001. doi:10.1016/j.ijantimicag.2010.05.008
  • BarkerRH, UrgaonkarS, MazitschekR, et al. Aminoindoles, a novel scaffold with potent activity against Plasmodium falciparum. Antimicrob Agents Chemother. 2011;55(6):2612–2622. doi:10.1128/AAC.01714-1021422215
  • VasconcelosSN, MeissnerKA, FerrazWR, et al. Indole-3-glyoxyl tyrosine: synthesis and antimalarial activity against Plasmodium falciparum. Future Med Chem. 2019;11(6):525–538. doi:10.4155/fmc-2018-024630916995
  • RobertsonLP, DuffyS, WangY, et al. Pimentelamines A-C, indole alkaloids isolated from the leaves of the Australian tree Flindersia pimenteliana. J Nat Prod. 2017;80:3211–3217.29236492
  • RamsayRR, Popovic‐NikolicMR, NikolicK, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7(1). doi:10.1186/s40169-017-0181-2
  • MorphyR, RankovicZ. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523–6543. doi:10.1021/jm058225d16220969
  • PassemarC, SaleryM, SohPN, et al. Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules. Phytomedicine. 2011;18(13):1118–1125. doi:10.1016/j.phymed.2011.03.01021612900
  • KgokongJL, SmithPP, MatsabisaGM. 1,2,4-Triazino-[5,6b]indole derivatives: effects of the trifluoromethyl group on in vitro antimalarial activity. Bioorg Med Chem. 2005;13(8):2935–2942. doi:10.1016/j.bmc.2005.02.01715781403
  • HerraizT, GuillénH, Gonzalez-PenaD, et al. Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-51604-z
  • KaurK, JainM, KaurT, et al. Antimalarials from nature. Bioorg Med Chem. 2009;17(9):3229–3256. doi:10.1016/j.bmc.2009.02.05019299148
  • SpillmanNJ, AllenRW, McNamaraCW, et al. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe. 2013;13(2):227–237. doi:10.1016/j.chom.2012.12.00623414762
  • FlanneryEL, McNamaraCW, KimSW, et al. Mutations in the P-type cation-transporter ATPase 4, PfATP4, mediate resistance to both aminopyrazole and spiroindolone antimalarials. ACS Chem Biol. 2015;10(2):413–420. doi:10.1021/cb500616x25322084
  • RamanathanAA, MorriseyJM, DalyTM, et al. Oligomerization of the antimalarial drug target PfATP4 is essential for parasite survival. bioRxiv. 2019. doi:10.1101/2019.12.12.874826
  • SpillmanNJ, KirkK. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. Int J Parasitol Drugs Drug Resist. 2015;5(3):149–162. doi:10.1016/j.ijpddr.2015.07.00126401486
  • Jimenez-DiazMB, EbertD, SalinasY, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. PNAS. 2014;111(50):E5455–E5462. doi:10.1073/pnas.141422111125453091
  • SacchettoR, BertipagliaI, GiannettiS, et al. Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. J Struct Biol. 2012;178(1):38–44. doi:10.1016/j.jsb.2012.02.00822387132
  • PfATP4. 2020 Available from: https://www.uniprot.org/uniprot/?query=PfATP4&sort=score. Accessed 1013, 2020.
  • DangiP, JainR, MamidalaR, et al. Natural product inspired novel indole based chiral scaffold kills human malaria parasites via ionic imbalance mediated cell death. Sci Rep. 2019:9. doi:10.1038/s41598-019-54339-z30626887
  • SinghMK, DiasBKDM, GarciaCRS. Role of melatonin in the synchronization of asexual forms in the parasite Plasmodium falciparum. Biomolecules. 2020;10(9):1243. doi:10.3390/biom10091243
  • DeyS, GuhaM, AlamA, et al. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med. 2009;46(2):271–281. doi:10.1016/j.freeradbiomed.2008.10.03219015023
  • HottaCT, GazariniML, BeraldoFH, et al. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol. 2000;2(7):466–468. doi:10.1038/3501711210878815
  • FuruyamaW, EnomotoM, MossaadE, et al. An interplay between 2 signaling pathways: melatonin-cAMP and IP3–Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum.Biochem Biophys Res Commun. 2014;446(1):125–131. doi:10.1016/j.bbrc.2014.02.07024607908
  • LuthraT, NayakAK, BoseS, et al. Indole based antimalarial compounds targeting the melatonin pathway: their design, synthesis and biological evaluation. Eur J Med Chem. 2019;168:11–27. doi:10.1016/j.ejmech.2019.02.01930798050
  • SrinivasanV, ZakariaR, MohamedM. Malaria, therapeutic options and melatonin. Austin J Infect Dis. 2014;1:5.
  • BagnaresiP, MarkusRP, HottaCT, et al. Desynchronizing Plasmodium cell cycle increases chloroquine protection at suboptimal doses. Open Parasitol J. 2008;2(1):55–58. doi:10.2174/1874421400802010055
  • ForkuoAD, AnsahC, MensahKB, et al. In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine. Malar J. 2017;16. doi:10.2174/1874421400802010055
  • ForkuoAD, AnsahC, BoaduK, et al. Synergistic anti-malarial action of cryptolepine and artemisinins. Malar J. 2016;15. doi:10.2174/1874421400802010055
  • ZhaoYL, SuM, ShangJH, et al. Genotoxicity and safety pharmacology studies of indole alkaloids extract from leaves of Alstonia Scholaris. Nat Prod Bioprospect. 2020;10:119–129. doi:10.1007/s13659-020-00242-432356224
  • GopalanRC, EmerceE, WrightCW, et al. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the comet assay. Toxicol Lett. 2011;207(3):322–325. doi:10.1016/j.toxlet.2011.09.01021946165
  • WrightCW. Antiprotozoal natural products In: EvansWC, editor. Trease and Evan’s Pharmacognosy. 16th ed. Edinburg, United Kingdom: Elsevier; 2009:428–435.
  • MensahKB, BennehC, ForkuoAD, et al. Cryptolepine, the main alkaloid of the antimalarial Cryptolepis sanguinolenta (Lindl.) schlechter, induces malformations in Zebrafish Embryos. Biochem Res Int. 2019;2019:1–7. doi:10.1155/2019/7076986
  • ZhaoYL, SuM, ShangJH, et al. Acute and sub-chronic toxicity of indole alkaloids extract from leaves of Alstonia scholaris (L.) R. Br. in beagle dogs. Nat Prod Bioprospect. 2020;10:209–220. doi:10.1007/s13659-020-00246-032524465
  • AnsahC, GooderhamNJ. The popular herbal antimalarial, extract of Cryptolepis sanguinolenta, is potently cytotoxic. Toxicol Sci. 2002;70:245–251. doi:10.1093/toxsci/70.2.24512441369
  • PalHC, KatiyarSK. Cryptolepine, a plant alkaloid, inhibits the growth of non-melanoma skin cancer cells through inhibition of topoisomerase and induction of DNA damage. Molecules. 2016;21(12):1758. doi:10.3390/molecules21121758
  • MuganzaDM, FruthB, NzunzuJL, et al. In vitro antiprotozoal activity and cytotoxicity of extracts and isolated constituents from Greenwayodendron suaveolens. J Ethnopharmacol. 2016;193:510–516. doi:10.1016/j.jep.2016.09.05127693770
  • GirardotM, DeregnaucourtC, DevilleA, et al. Indole alkaloids from Muntafara sessilifolia with antiplasmodial and cytotoxic activities. Phytochemistry. 2012;73:65–73. doi:10.1016/j.phytochem.2011.09.01222033013
  • DokunmuT, AhanonuC, AbegundeO, et al. Artemisinin-induced delayed hemolysis after administration of artesunate and artesunate-amodiaquine in malaria-free Wistar rats. Biomed Res Ther. 2017;4(4):1246–1260. doi:10.15419/bmrat.v4i4.160
  • StiborovaM, CernaV, MoserovaM, et al. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, hepatic cytochrome P450 reductase null (HRN™) mice and pure enzymes. Int J Mol Sci. 2014;16(1):284–306. doi:10.3390/ijms1601028425547492
  • KunduN, RoyA, BanikD, et al. Unveiling the mode of interaction of berberine alkaloid in different supramolecular confined environments: interplay of surface charge between nano-confined charged layer and DNA. J Phys Chem B. 2016;120(6):1106–1120. doi:10.1021/acs.jpcb.5b1012126756221
  • LiAL, HaoY, WangWY, et al. Design, synthesis, and anticancer evaluation of novel indole derivatives of ursolic acid as potential topoisomerase II inhibitors. Int J Mol Sci. 2020;21(8):2876. doi:10.3390/ijms21082876
  • Van MiertS, JonckersT, CimangaK, et al. In vitro inhibition of β-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives. Exp Parasitol. 2004;108(3–4):163–168. doi:10.1016/j.exppara.2004.08.00615582513