445
Views
11
CrossRef citations to date
0
Altmetric
Review

A Review of Drug Therapy in Vestibular Schwannoma

ORCID Icon, , , , &
Pages 75-85 | Published online: 08 Jan 2021

References

  • HuangX, XuJ, XuM, et al. Clinical features of intracranial vestibular schwannomas. Oncol Lett. 2013;5(1):57–62. doi:10.3892/ol.2012.101123255894
  • AsthagiriAR, ParryDM, ButmanJA, et al. Neurofibromatosis type 2. Lancet. 2009;373(9679):1974–1986. doi:10.1016/s0140-6736(09)60259-219476995
  • LeeJD, KwonTJ, KimUK, LeeWS. Genetic and epigenetic alterations of the NF2 gene in sporadic vestibular schwannomas. PLoS One. 2012;7(1):5. doi:10.1371/journal.pone.0030418
  • SuryanarayananR, RamsdenRT, SaeedSR, et al. Vestibular schwannoma: role of conservative management. J Laryngol Otol. 2010;124(3):251–257. doi:10.1017/s002221510999236220003606
  • Van LingeA, Van OsR, HoekstraN, et al. Progression of hearing loss after LINAC-based stereotactic radiotherapy for vestibular schwannoma is associated with cochlear dose, not with pre-treatment hearing level. Radiat Oncol. 2018;13(1):253. doi:10.1186/s13014-018-1202-z30583739
  • WiseSC, CarlsonML, TveitenOV, et al. Surgical salvage of recurrent vestibular schwannoma following prior stereotactic radiosurgery. Laryngoscope. 2016;126(11):2580–2586. doi:10.1002/lary.2594327107262
  • HayhurstC, ZadehG. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92. doi:10.1093/neuonc/nor17122028389
  • SobelRA. Vestibular (acoustic) schwannomas: histologic features in neurofibromatosis 2 and in unilateral cases. J Neuropathol Exp Neurol. 1993;52(2):106–113. doi:10.1097/00005072-199303000-000028440992
  • JaaskelainenJ, PaetauA, PyykkoI, et al. Interface between the facial nerve and large acoustic neurinomas. Immunohistochemical study of the cleavage plane in NF2 and non-NF2 cases. J Neurosurg. 1994;80(3):541–547. doi:10.3171/jns.1994.80.3.05418113868
  • GilkesCE, EvansDG. Review of radiation therapy services for neurofibromatosis (NF2) patients in England. Br J Neurosurg. 2014;28(1):16–19. doi:10.3109/02688697.2013.86138624350733
  • McClatcheyAI. Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19(19):2265–2277. doi:10.1101/gad.133560516204178
  • YiCL, TroutmanS, FeraD, et al. A tight junction-associated merlin-angiomotin complex mediates merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell. 2011;19(4):527–540. doi:10.1016/j.ccr.2011.02.01721481793
  • XiaoGH, BeeserA, ChernoffJ, TestaJR. p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem. 2002;277(2):883–886. doi:10.1074/jbc.C10055320011719502
  • OkadaM, WangYR, JangSW, et al. Akt phosphorylation of merlin enhances its binding to phosphatidylinositols and inhibits the tumor-suppressive activities of merlin. Cancer Res. 2009;69(9):4043–4051. doi:10.1158/0008-5472.can-08-393119351837
  • JacobA, LeeTX, NeffBA, et al. Phosphatidylinositol 3-kinase/Akt pathway activation in human vestibular schwannoma. Otol Neurotol. 2008;29(1):58–68. doi:10.1097/mao.0b013e31816021f718199958
  • LiW, CooperJ, ZhouL, et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell. 2014;26(1):48–60. doi:10.1016/j.ccr.2014.05.00125026211
  • JamesMF, StivisonE, BeauchampR, et al. Regulation of mTOR complex 2 signaling in neurofibromatosis 2-deficient target cell types. Mol Cancer Res. 2012;10(5):649–659. doi:10.1158/1541-7786.Mcr-11-0425-t22426462
  • RobinsonDR, WuYM, LinSF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–5557. doi:10.1038/sj.onc.120395711114734
  • KazlauskasA. Receptor tyrosine kinases and their target. Curr Opin Genet Dev. 1994;4(1):5–14. doi:10.1016/0959-437x(94)90085-x8193540
  • WickremesekeraA, HovensCM, KayeAH. Expression of ErbB-1 and 2 in vestibular schwannomas. J Clin Neurosci. 2007;14(12):1199–1206. doi:10.1016/j.jocn.2007.05.00917964790
  • AltunaX, LopezJP, YuMA, et al. Potential role of imatinib mesylate (gleevec, STI-571) in the treatment of vestibular schwannoma. Otol Neurotol. 2011;32(1):163–170. doi:10.1097/MAO.0b013e318200966521157293
  • BlairKJ, KiangA, Wang-RodriguezJ, et al. EGF and bFGF promote invasion that is modulated by PI3/akt kinase and erk in vestibular schwannoma. Otol Neurotol. 2011;32(2):308–314. doi:10.1097/MAO.0b013e318206fc3d21178801
  • DilwaliS, LysaghtA, RobertsD, et al. Sporadic vestibular schwannomas associated with good hearing secrete higher levels of fibroblast growth factor 2 than those associated with poor hearing irrespective of tumor size. Otol Neurotol. 2013;34(4):748–754. doi:10.1097/MAO.0b013e31828048ec23512073
  • FotakopoulosG, FountasK, TsianakaE, et al. Could IGF-I levels play a neuroprotective role in patients with large vestibular schwannomas? Future Sci OA. 2018;4(2):9. doi:10.4155/fsoa-2017-0103
  • TauroneS, BianchiE, AttanasioG, et al. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue. Mol Med Rep. 2015;12(1):737–745. doi:10.3892/mmr.2015.341525738867
  • TsygankovAY. Non-receptor protein tyrosine kinases. Front Biosci. 2003;8(6):S595–S635. doi:10.2741/110612700079
  • ZhouL, ErcolanoE, AmmounS, et al. Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/beta-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia. 2011;13(12):1101–U17. doi:10.1593/neo.11106022247700
  • LinggiB, CarpenterG. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 2006;16(12):649–656. doi:10.1016/j.tcb.2006.10.00817085050
  • DohertyJK, OngkekoW, CrawleyB, AndalibiA, RyanAF. ErbB and Nrg: potential molecular targets for vestibular schwannoma pharmacotherapy. Otol Neurotol. 2008;29(1):50–57. doi:10.1097/mao.0b013e31815d442918199957
  • SylwiaA, CunliffeCH, AllenJC, et al. ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro Oncol. 2010;12(8):834–843. doi:10.1093/neuonc/noq01220511180
  • AhmadZK, BrownCM, CuevaRA, RyanAF, DohertyJK. ErbB expression, activation, and inhibition with lapatinib and tyrphostin (AG825) in human vestibular schwannomas. Otol Neurotol. 2011;32(5):841–847. doi:10.1097/MAO.0b013e31821f7d8821659924
  • ClarkJJ, ProvenzanoM, DiggelmannHR, et al. The ErbB inhibitors trastuzumab and erlotinib inhibit growth of vestibular schwannoma xenografts in nude mice: a preliminary study. Otol Neurotol. 2008;29(6):846–853. doi:10.1097/MAO.0b013e31817f739818636037
  • GuarneriV, GeneraliDG, FrassoldatiA, et al. Double-blind, placebo-controlled, multicenter, randomized, phase IIb neoadjuvant study of letrozole-lapatinib in postmenopausal hormone receptor-positive, human epidermal growth factor receptor 2-negative, operable breast cancer. J Clin Oncol. 2014;32(10):1050–1057. doi:10.1200/jco.2013.51.4737.24590635
  • KarajannisMA, LegaultG, HagiwaraM, et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-Oncology. 2012;14(9):1163–1170. doi:10.1093/neuonc/nos14622844108
  • BushML, BurnsSS, OblingerJ, et al. Treatment of vestibular schwannoma cells with ErbB inhibitors. Otol Neurotol. 2012;33(2):244–257. doi:10.1097/MAO.0b013e31823e287f22222570
  • GarrettJT, OlivaresMG, RinehartC, et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A. 2011;108(12):5021–5026. doi:10.1073/pnas.101614010821385943
  • PlotkinSR, HalpinC, MckennaMJ, LoefflerJS, BarkerFG, BarkerFG. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol. 2010;31(7):1135–1143. doi:10.1097/MAO.0b013e3181eb328a20736812
  • MukherjeeJ, KamnasaranD, BalasubramaniamA, et al. Human schwannomas express activated platelet-derived growth factor receptors and c-kit and are growth inhibited by gleevec (imatinib mesylate). Cancer Res. 2009;69(12):5099–5107. doi:10.1158/0008-5472.Can-08-447519509233
  • YenerU, AvsarT, AkgunE, et al. Assessment of antiangiogenic effect of imatinib mesylate on vestibular schwannoma tumors using in vivo corneal angiogenesis assay laboratory investigation. J Neurosurg. 2012;117(4):697–704. doi:10.3171/2012.6.jns11226322900848
  • TanakaC, YinOQP, SethuramanV, et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther. 2010;87(2):197–203. doi:10.1038/clpt.2009.20819924121
  • AmmounS, SchmidMC, TrinerJ, ManleyP, HanemannCO. Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro Oncol. 2011;13(7):759–766. doi:10.1093/neuonc/nor05621727212
  • SabhaN, AuK, AgnihotriS, et al. Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells. PLoS One. 2012;7(6):10. doi:10.1371/journal.pone.0039412
  • TanFH, PutoczkiTL, StylliSS, LuworRB. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco Targets Ther. 2019;12:635–645. doi:10.2147/ott.s18939130705592
  • PetrilliAM, GarciaJ, BottM, et al. Ponatinib promotes a G(1) cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget. 2017;8(19):31666–31681. doi:10.18632/oncotarget.1591228427224
  • AcevedoLM, BarillasS, WeisSM, GöthertJR, ChereshDA. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood. 2008;111(5):2674–2680. doi:10.1182/blood-2007-08-11020518180379
  • WongHK, LahdenrantaJ, KamounWS, et al. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res. 2010;70(9):3483–3493. doi:10.1158/0008-5472.can-09-310720406973
  • PerC-T, KimW, AmarnadhN, et al. VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol. 2005;26(1):98–101. doi:10.1097/00129492-200501000-0001715699727
  • PlotkinSR, Stemmer-RachamimovAO, BarkerFG, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. New Eng J Med. 2009;361(4):358–367. doi:10.1056/NEJMoa090257919587327
  • PlotkinSR, MerkerVL, HalpinC, JenningsD, BarkerFG. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33(6):1046–1052. doi:10.1097/MAO.0b013e31825e73f522805104
  • MorrisKA, GoldingJF, AxonPR, et al. Bevacizumab in neurofibromatosis type 2 (NF2) related vestibular schwannomas: a nationally coordinated approach to delivery and prospective evaluation. Neuro Oncol Pract. 2016;3(4):281–289. doi:10.1093/nop/npv065
  • AlaninMC, KlausenC, Caye-ThomasenP, et al. The effect of bevacizumab on vestibular schwannoma tumour size and hearing in patients with neurofibromatosis type 2. Eur Arch Otorhinolaryngol. 2015;272(12):3627–3633. doi:10.1007/s00405-014-3398-325421643
  • PlotkinSR, DudaDG, MuzikanskyA, et al. Multicenter, prospective, phase ii and biomarker study of high-dose bevacizumab as induction therapy in patients with neurofibromatosis type 2 and progressive vestibular schwannoma. J Clin Oncol. 2019;37(35):3446–3454. doi:10.1200/jco.19.0136731626572
  • HochartA, GaillardV, BaronciniM, et al. Bevacizumab decreases vestibular schwannomas growth rate in children and teenagers with neurofibromatosis type 2. J Neurooncol. 2015;124(2):229–236. doi:10.1007/s11060-015-1828-826022982
  • RenziS, MichaeliO, SalvadorH, et al. Bevacizumab for NF2-associated vestibular schwannomas of childhood and adolescence. Pediatr Blood Cancer. 2020;67(5):4. doi:10.1002/pbc.28228
  • GugelI, KluweL, ZipfelJ, et al. Minimal effect of bevacizumab treatment on residual vestibular schwannomas after partial resection in young neurofibromatosis type 2 patients. Cancers. 2019;11(12):1862. doi:10.3390/cancers11121862
  • GaoX, ZhaoY, Stemmer-RachamimovAO, et al. Anti-VEGF treatment improves neurological function and augments radiation response in NF2 schwannoma model. Proc Natl Acad Sci U S A. 2015;112(47):14676–14681. doi:10.1073/pnas.151257011226554010
  • BlakeleyJO, YeX, DudaDG, et al. Efficacy and biomarker study of bevacizumab for hearing loss resulting from neurofibromatosis type 2-associated vestibular schwannomas. J Clin Oncol. 2016;34(14):1669–1675. doi:10.1200/JCO.2015.64.381726976425
  • SlusarzKM, MerkerVL, MuzikanskyA, FrancisSA, PlotkinSR. Long-term toxicity of bevacizumab therapy in neurofibromatosis 2 patients. Cancer Chemother Pharmacol. 2014;73(6):1197–1204. doi:10.1007/s00280-014-2456-224710627
  • RiinaHA, BurkhardtJK, SantillanA, et al. Short-term clinico-radiographic response to super-selective intra-arterial cerebral infusion of bevacizumab for the treatment of vestibular schwannomas in neurofibromatosis type 2. Interv Neuroradiol. 2012;18(2):127–132. doi:10.1177/15910199120180020122681725
  • SaidF, PhilippK, CarstenD, AlexanderS, Victor-FelixM. Reduced dosage of bevacizumab in treatment of vestibular schwannomas in patients with neurofibromatosis type 2. Eur Arch Otorhinolaryngol. 2015;272(12):3857–3860. doi:10.1007/s00405-015-3604-y25794543
  • KarajannisMA, HagiwaraM, SchreyerM, HaqueS. Sustained imaging response and hearing preservation with low-dose bevacizumab in sporadic vestibular schwannoma. Neuro-Oncology. 2019;21(6):822–824. doi:10.1093/neuonc/noz05131180122
  • TamuraR, FujiokaM, MorimotoY, et al. A VEGF receptor vaccine demonstrates preliminary efficacy in neurofibromatosis type 2. Nat Commun. 2019;10(1):5758. doi:10.1038/s41467-020-16007-z31848332
  • KonstorumA, LowengrubJS. Activation of the HGF/c-Met axis in the tumor microenvironment: a multispecies model. J Theor Biol. 2018;439:86–99. doi:10.1016/j.jtbi.2017.11.02529203124
  • SonamD, DanielR, StankovicKM. Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol Ther. 2015;16(1):170–175. doi:10.4161/15384047.2014.97276525692621
  • XingF, LiuY, SharmaS, WuK, WatabeK. Activation of the c-met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 2016;76(17):4970–4980. doi:10.1158/0008-5472.CAN-15-354127364556
  • HuS-Y, DuanH-F, LiQ-F, et al. Hepatocyte growth factor protects endothelial cells against gamma ray irradiation-induced damage. Acta Pharmacol Sin. 2009;30(10):1415–1420. doi:10.1038/aps.2009.13319749787
  • MedovaM, AebersoldDM, ZimmerY. MET inhibition in tumor cells by PHA665752 impairs homologous recombination repair of DNA double strand breaks. Int J Cancer. 2012;130(3):728–734. doi:10.1002/ijc.2605821400509
  • DelittoD, Vertes-GeorgeE, HughesSJ, BehrnsKE, TrevinoJG. c-Met signaling in the development of tumorigenesis and chemoresistance: potential applications in pancreatic cancer. World J Gastroenterol. 2014;20(26):8458–8470. doi:10.3748/wjg.v20.i26.845825024602
  • ZhaoY, LiuP, ZhangN, et al. Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci U S A. 2018:201719966. doi:10.1073/pnas.1719966115.
  • TroutmanS, MoleirinhoS, KotaS, et al. Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1. Oncotarget. 2016;7(34):54515–54525. doi:10.18632/oncotarget.1024827363027
  • FuseMA, PlatiSK, BurnsSS, et al. Combination therapy with c-met and src inhibitors induces caspase-dependent apoptosis of merlin-deficient schwann cells and suppresses growth of schwannoma cells. Mol Cancer Ther. 2017;16(11):2387–2398. doi:10.1158/1535-7163.mct-17-041728775147
  • WellingDB, LasakJM, AkhmametyevaE, GhaheriB, ChangLS. cDNA microarray analysis of vestibular schwannomas. Otol Neurotol. 2002;23(5):736–748. doi:10.1097/00129492-200209000-0002212218628
  • LasakJM, WellingDB, AkhmametyevaEM, SalloumM, ChangLS. Retinoblastoma - cyclin-dependent kinase pathway deregulation in vestibular schwannomas. Laryngoscope. 2002;112(9):1555–1561. doi:10.1097/00005537-200209000-0000412352662
  • LopiccoloJ, BlumenthalGM, BernsteinWB, DennisPA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2008;11(1–2):32–50. doi:10.1016/j.drup.2007.11.00318166498
  • LeeTX, PackerMD, HuangJ, et al. Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer. 2009;45(9):1709–1720. doi:10.1016/j.ejca.2009.03.01319359162
  • BushML, OblingerJ, BrendelV, et al. AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro-Oncology. 2011;13(9):983–999. doi:10.1093/neuonc/nor07221778190
  • JacobA, OblingerJ, BushML, et al. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope. 2012;122(1):174–189. doi:10.1002/lary.2239222109824
  • GiovanniniM, BonneNX, VitteJ, et al. mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol. 2014;16(4):493–504. doi:10.1093/neuonc/not24224414536
  • LaneHA, WoodJM, McsheehyPM, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15(5):1612. doi:10.1158/1078-0432.CCR-08-205719223496
  • KarajannisMA, LegaultG, HagiwaraM, et al. Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol. 2014;16(2):292–297. doi:10.1093/neuonc/not15024311643
  • GoutagnyS, RaymondE, Esposito-FareseM, et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol. 2015;122(2):313–320. doi:10.1007/s11060-014-1710-025567352
  • PozzobonT, GoldoniG, ViolaA, MolonB. CXCR4 signaling in health and disease. Immunol Lett. 2016;177:6–15. doi:10.1016/j.imlet.2016.06.00627363619
  • Bar-ShavitR, MaozM, KancharlaA, et al. G protein-coupled receptors in cancer. Int J Mol Sci. 2016;17(8):1320. doi:10.3390/ijms17081320
  • BreunM, SchwerdtfegerA, MartellottaDD, KesslerAF, HagemannC. CXCR4: a new player in vestibular schwannoma pathogenesis. Oncotarget. 2018;9(11):9940–9950. doi:10.18632/oncotarget.2411929515781
  • BreunM, MonoranuCM, KesslerAF, et al. [68Ga]-pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas. Front Oncol. 2019;9:503. doi:10.3389/fonc.2019.0050331245296
  • DilwaliS, KaoSY, FujitaT, LandeggerLD, StankovicKM. Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res. 2015;166(1):1–11. doi:10.1016/j.trsl.2014.12.00725616959
  • BujungH, KruscheCA, SchwabeK. Cyclooxygenase-2 supports tumor proliferation in vestibular schwannomas. Neurosurgery. 2011;68(4):1112–1117. doi:10.1227/NEU.0b013e318208f5c721221032
  • NakanishiM, RosenbergDW. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol. 2013;35(2):123–137. doi:10.1007/s00281-012-0342-822996682
  • KandathilCK, DilwaliS, WuCC, et al. Aspirin intake correlates with halted growth of sporadic vestibular schwannoma in vivo. Otol Neurotol. 2014;35(2):353–357. doi:10.1097/mao.000000000000018924448296
  • GuerrantW, KotaS, TroutmanS, et al. YAP mediates tumorigenesis in neurofibromatosis type 2 by promoting cell survival and proliferation through a COX-2-EGFR signaling axis. Cancer Res. 2016;76(12):3507–3519. doi:10.1158/0008-5472.can-15-114427216189
  • WahleBM, HawleyET, HeY, et al. Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2. Oncotarget. 2018;9(1):718–725. doi:10.18632/oncotarget.2200229416648
  • MacKeithS, WassonJ, BakerC, et al. Aspirin does not prevent growth of vestibular schwannomas: a case-control study. Laryngoscope. 2018;128(9):2139–2144. doi:10.1002/lary.2711429405309
  • BehlingF, RiesV, SkardellyM, et al. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake. Acta Neuropathol Commun. 2019;7(1):105. doi:10.1186/s40478-019-0760-031291992
  • HunterJB, O’ConnellBP, WannaGB, et al. Vestibular schwannoma growth with aspirin and other nonsteroidal anti-inflammatory drugs. Otol Neurotol. 2017;38(8):1158–1164. doi:10.1097/mao.000000000000150628692590
  • MullerDN, HeissmeyerV, DechendR, et al. Aspirin inhibits NF-kappa B and protects from angiotensin II-induced organ damage. FASEB J. 2001;15(8):1822–1824. doi:10.1096/fj.00-0843fje11481242
  • GehlhausenJR, HawleyE, WahleBM, et al. A proteasome-resistant fragment of NIK mediates oncogenic NF-kappa B signaling in schwannomas. Hum Mol Genet. 2019;28(4):572–583. doi:10.1093/hmg/ddy36130335132
  • Van GompelJJ, AgazziS, CarlsonML, et al. Congress of neurological surgeons systematic review and evidence-based guidelines on emerging therapies for the treatment of patients with vestibular schwannomas. Neurosurgery. 2018;82(2):E52–E54. doi:10.1093/neuros/nyx51629309638
  • GrunbergSM, WeissMH, RussellCA, et al. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006;24(8):727–733. doi:10.1080/0735790060106233917162554
  • CheckJH, WilsonC, CohenR, SarumiM. Evidence that mifepristone, a progesterone receptor antagonist, can cross the blood brain barrier and provide palliative benefits for glioblastoma multiforme grade IV. Anticancer Res. 2014;34(5):2385–2388. doi:10.1038/nrc373324778047
  • SonamD, BriëtMC, KaoS-Y. Preclinical validation of anti-nuclear factor-kappa B therapy to inhibit human vestibular schwannoma growth. Mol Oncol. 2015;9(7):1359–1370. doi:10.1016/j.molonc.2015.03.00925891780
  • SagersJE, BrownAS, VasilijicS, et al. Publisher correction: computational repositioning and preclinical validation of mifepristone for human vestibular schwannoma. Sci Rep. 2018;8(1):17449. doi:10.1038/s41598-018-36016-930470790
  • WangY, ZhangQ, WangB, LiP, LiuP. LiCl treatment induces programmed cell death of schwannoma cells through AKT- and mTOR-mediated necroptosis. Neurochem Res. 2017;42(8):2363–2371. doi:10.1007/s11064-017-2256-228397069
  • SpearSA, BurnsSS, OblingerJL, et al. Natural compounds as potential treatments of NF2-deficient schwannoma and meningioma: cucurbitacin D and goyazensolide. Otol Neurotol. 2013;34(8):1519–1527. doi:10.1097/MAO.0b013e318295616923928514
  • KimJY, SongJJ, KwonBM, LeeJD. Tanshinone IIA exerts antitumor activity against vestibular schwannoma cells by inhibiting the expression of hypoxia-inducible factor-1 alpha. Mol Med Rep. 2015;12(3):4604–4609. doi:10.3892/mmr.2015.393226080622
  • YangP, SunD, JiangF. Ailanthone promotes human vestibular schwannoma cell apoptosis and autophagy by downregulation of miR-21. Oncol Res. 2018;26(6):941–948. doi:10.3727/096504018x1514977553333129298734
  • RenY, SagersJE, LandeggerLD, BhatiaSN, StankovicKM. Tumor-penetrating delivery of siRNA against TNFα to human vestibular schwannomas. Sci Rep. 2017;7(1):12922. doi:10.1038/s41598-017-13032-929018206
  • OuerdaniA, GoutagnyS, KalamaridesM, TroconizIF, RibbaB. Mechanism-based modeling of the clinical effects of bevacizumab and everolimus on vestibular schwannomas of patients with neurofibromatosis type 2. Cancer Chemother Pharmacol. 2016;77(6):1263–1273. doi:10.1007/s00280-016-3046-227146400
  • Pecina-SlausN. Merlin, the NF2 gene product. Pathol Oncol Res. 2013;19(3):365–373. doi:10.1007/s12253-013-9644-y23666797