186
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Resveratrol Ameliorates Systemic Sclerosis via Suppression of Fibrosis and Inflammation Through Activation of SIRT1/mTOR Signaling

, , , , , , , , & show all
Pages 5337-5348 | Published online: 02 Dec 2020

References

  • Hoffmann-VoldAM, MolbergØ. Detection, screening, and classification of interstitial lung disease in patients with systemic sclerosis. Curr Opin Rheumatol. 2020;32(6):497–504. doi:10.1097/BOR.000000000000074132890027
  • LoLMP, TaylorBV, WinzenbergT, et al. Estimating the relative contribution of comorbidities in predicting health-related quality of life of people with multiple sclerosis. J Neurol. 2020. doi:10.1007/s00415-020-10195-w
  • GeraldesR, EsiriMM, PereraR, et al. Vascular disease and multiple sclerosis: a post-mortem study exploring their relationships. Brain. 2020;143(10):2998–3012. doi:10.1093/brain/awaa25532875311
  • RawatD, ChhonkerSK, NaikRA, et al. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J Biochem Mol Toxicol. 2020:e22625. doi:10.1002/jbt.2262532894639
  • Fonseca-SantosB, ChorilliM. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm. 2020;589:119832. doi:10.1016/j.ijpharm.2020.11983232877730
  • AhmadI, HodaM. Attenuation of diabetic retinopathy and neuropathy by resveratrol: review on its molecular mechanisms of action. Life Sci. 2020;245:117350. doi:10.1016/j.lfs.2020.11735031982401
  • ChuH, JiangS, LiuQ, et al. Sirtuin1 protects against systemic sclerosis-related pulmonary fibrosis by decreasing proinflammatory and profibrotic processes. Cell Mol Biol. 2018;58:28–39.
  • NowosadA, BessonA. CDKN1B/p27 regulates autophagy via the control of ragulator and MTOR activity in amino acid-deprived cells. Autophagy. 2020;1–2. doi:10.1080/15548627.2020.1831217
  • SharmaD, MalikA, BalakrishnanA. et al. RIPK3 promotes mefv expression and pyrin inflammasome activation via modulation of mtor signaling. J Immunol.2020;ji2000244. doi:10.4049/jimmunol.2000244
  • XiongY, CaoF, ChenL, et al. Identification of key microRNAs and targeted genes for the diagnosis of bone nonunion. Mol Med Rep. 2020;21:1921–1933. doi:10.3892/mmr.2020.1099632319614
  • KomorowskaJ, WątrobaM, SzukiewiczD. Review of beneficial effects of resveratrol in neurodegenerative diseases such as alzheimer’s disease. Adv Med Sci. 2020;65(2):415–423. doi:10.1016/j.advms.2020.08.00232871321
  • Viana-MattioliS, CinegagliaN, Bertozzi-MatheusM, et al. SIRT1-dependent effects of resveratrol and grape juice in an in vitro model of preeclampsia. Biomed Pharmacother. 2020;131:110659. doi:10.1016/j.biopha.2020.11065932866809
  • GianchecchiE, FierabracciA. Insights on the effects of resveratrol and some of its derivatives in cancer and autoimmunity: a molecule with a dual activity. Antioxidants (Basel). 2020;9. doi:10.3390/antiox9020091
  • ZerrP, Palumbo-ZerrK, HuangJ, et al. Sirt1 regulates canonical TGF-β signaling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75(1):226–233. doi:10.1136/annrheumdis-2014-20574025180292
  • JiangY, HuF, LiQ, et al. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol. 2019;77:105968. doi:10.1016/j.intimp.2019.10596831704290
  • ChenC, AkiyamaK, WangD, et al. mTOR inhibition rescues osteopenia in mice with systemic sclerosis. J Exp Med. 2015;212(1):73–91. doi:10.1084/jem.2014064325534817
  • MutluE, GibbsST, SouthN, et al. Comparative toxicokinetics of trans-resveratrol and its major metabolites in harlan sprague dawley rats and B6C3F1/N mice following oral and intravenous administration. Toxicol Appl Pharmacol. 2020;394:114962. doi:10.1016/j.taap.2020.11496232205187
  • CaoX, TianS, FuM, et al. Resveratrol protects human bronchial epithelial cells against nickel-induced toxicity via suppressing p38 MAPK, NF-κB signaling, and NLRP3 inflammasome activation. Environ Toxicol. 2020;35(5):609–618. doi:10.1002/tox.2289631943712
  • Trapiella-MartínezL, Díaz-LópezJB, Caminal-MonteroL, et al. Very early and early systemic sclerosis in the Spanish scleroderma registry (RESCLE) cohort. Autoimmun Rev. 2017;16(8):796–802. doi:10.1016/j.autrev.2017.05.01328564618
  • GordonSM, StittRS, NeeR, et al. Risk factors for future scleroderma renal crisis at systemic sclerosis diagnosis. J Rheumatol. 2019;46(1):85–92. doi:10.3899/jrheum.17118630008456
  • QiQ, MaoY, TianY, et al. Geniposide inhibited endothelial-mesenchymal transition via the mTOR signaling pathway in a bleomycin-induced scleroderma mouse model. Am J Transl Res. 2017;9:1025–1036.28386330
  • SutoT, KaronitschT. The immunobiology of mTOR in autoimmunity. J Autoimmun. 2020;110:102373. doi:10.1016/j.jaut.2019.10237331831256
  • PengC, FuchaoC, JiexinL, et al. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin a attenuates d-galactose-induced brain aging in mice. Neurotherapeutics. 2019;16(4):1269–1282. doi:10.1007/s13311-019-00753-031420820
  • QinY, Jin-FengW, Xiao-HuaX, et al. Effect of lycopene on pain facilitation and the SIRT1/mTOR pathway in the dorsal horn of burn injury rats. Eur J Pharmacol. 2020; 889:173365.32712090
  • ChangH-C, GuarenteL. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–145. doi:10.1016/j.tem.2013.12.00124388149
  • GuarenteL. Calorie restriction and sirtuins revisited. Genes Dev. 2013;27(19):2072–2085. doi:10.1101/gad.227439.11324115767
  • LeeH-C, ChathurangaK, LeeJ-S. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med. 2019;51(12):1–11. doi:10.1038/s12276-019-0299-y
  • ChoiJ-E, MostoslavskyR. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev. 2014;26:24–32. doi:10.1016/j.gde.2014.05.00525005742
  • YangW, NagasawaK, C.M, et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell. 2016;167(4):985–1000.e21. doi:10.1016/j.cell.2016.10.01627881304
  • van de Ven RobertAH, SantosD, Haigis MarciaC. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med. 2017;23(4):320–331. doi:10.1016/j.molmed.2017.02.00528285806