185
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Taxifolin, Extracted from Waste Larix olgensis Roots, Attenuates CCl4-Induced Liver Fibrosis by Regulating the PI3K/AKT/mTOR and TGF-β1/Smads Signaling Pathways

, , , , , , & show all
Pages 871-887 | Published online: 26 Feb 2021

References

  • BatallerR, BrennerDA. Liver fibrosis. J Clin Invest. 2005;115:209–218. doi:10.1172/JCI2428215690074
  • EomYW, ShimKY, BaikSK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med. 2015;30:580–589. doi:10.3904/kjim.2015.30.5.58026354051
  • GaoB, BatallerR. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–1585. doi:10.1053/j.gastro.2011.09.00221920463
  • IwaisakoK, JiangC, ZhangM, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA. 2014;111:E3297–E3305. doi:10.1073/pnas.140006211125074909
  • PopovY, SchuppanD. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology. 2009;50:1294–1306. doi:10.1002/hep.2312319711424
  • MederackeI, HsuCC, TroegerJS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4. doi:10.1038/ncomms3823.
  • SekiE, SchwabeRF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–1079. doi:10.1002/hep.2733225066777
  • SonG, HinesIN, LindquistJ, SchrumLW, RippeRA. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology. 2009;50:1512–1523. doi:10.1002/hep.2318619790269
  • Xia TangL, Hua HeR, YangG, et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/smad signaling in vivo and in vitro. PLoS One. 2012. doi:10.1371/journal.pone.0031350
  • TianZ, GreeneAS, PietruszJL, MatusIR, LiangM. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18:404–411. doi:10.1101/gr.658700818230805
  • GuicciardiME, GoresGJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis. 2010;30:402–410. doi:10.1055/s-0030-126754020960379
  • WangR, ZhangH, WangY, SongF, YuanY. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol. 2017;47:126–133. doi:10.1016/j.intimp.2017.03.029
  • AnuSM, KimHJ, KimJE, BooYC. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother Res. 2008;22:1200–1207. doi:10.1002/ptr.243518729255
  • YangP, XuF, LiHF, et al. Detection of taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn. Molecules. 2016. doi:10.3390/molecules21091209
  • WangY, ZuY, LongJ, et al. Enzymatic water extraction of taxifolin from wood sawdust of Larix gmelini (Rupr.) Rupr. and evaluation of its antioxidant activity. Food Chem. 2011. doi:10.1016/j.foodchem.2010.11.155
  • WeidmannAE. Dihydroquercetin: more than just an impurity? Eur J Pharmacol. 2012;684:19–26. doi:10.1016/j.ejphar.2012.03.03522513183
  • SugiharaN, ArakawaT, OhnishiM, FurunoK. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radic Biol Med. 1999;27:1313–1323. doi:10.1016/S0891-5849(99)00167-710641726
  • ChuSC, HsiehYS, LinJY. Inhibitory effects of flavonoids on moloney murine leukemia virus reverse transcriptase activity. J Nat Prod. 1992;55:179–183. doi:10.1021/np50080a0051378087
  • RomeroMR, SerranoMA, EfferthT, AlvarezM, MarinJJG. Effect of cantharidin, cephalotaxine and homoharringtonine on ”in vitro” models of Hepatitis B Virus (HBV) and Bovine Viral Diarrhoea Virus (BVDV) replication. Planta Med. 2007;73:552–558. doi:10.1055/s-2007-96718417458779
  • KandaswamiC, PerkinsE, DrzewieckiG, SoloniukDS, MiddletonE. Differential inhibition of proliferation of human squamous cell carcinoma, gliosarcoma and embryonic fibroblast-like lung cells in culture by plant flavonoids. Anticancer Drugs. 1992;3:525–530. doi:10.1097/00001813-199210000-000131450447
  • DeviMA, DasNP. In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2. Cancer Lett. 1993;69:191–196. doi:10.1016/0304-3835(93)90174-88513446
  • KawaiiS, TomonoY, KataseE, OgawaK, YanoM. Effect of citrus flavonoids on HL-60 cell differentiation. Anticancer Res. 1999.
  • SunX, Chang ChenR, Hong YangZ, et al. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem Toxicol. 2014. doi:10.1016/j.fct.2013.11.013
  • GuoH, ZhangX, CuiY, et al. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Toxicol Appl Pharmacol. 2015;287:168–177. doi:10.1016/j.taap.2015.06.00226051872
  • RogovskiiVS, MatyushinAI, ShimanovskiiNL, et al. Antiproliferative and antioxidant activity of new dihydroquercetin derivatives. Eksp I Klin Farmakol. 2010. doi:10.30906/0869-2092-2010-73-9-39-42
  • PoliG. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med. 2000;21:49–98. doi:10.1016/S0098-2997(00)00004-210978499
  • FriedmanSL. Mechanisms of Hepatic Fibrogenesis. Gastroenterology. 2008;134:1655–1669. doi:10.1053/j.gastro.2008.03.00318471545
  • SekiE, BrennerDA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 2015;22:512–518. doi:10.1002/jhbp.24525869468
  • IbusukiR, UtoH, OdaK, et al. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis. PLoS One. 2017;12:e0174913. doi:10.1371/journal.pone.017491328403148
  • PaulD. New methods to control neuroblastoma growth. Cancer Biol Ther. 2014. doi:10.4161/cbt.28465
  • ZhaiB, HuF, JiangX. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther. 2014;13:1589–1598. doi:10.1158/1535-7163.MCT-13-104324705351
  • RoyS, RizviZA, AwasthiA. Metabolic checkpoints in differentiation of helper T cells in tissue inflammation. Front Immunol. 2019;9. doi:10.3389/fimmu.2018.03036.
  • MukhopadhyayS, SaqcenaM, FosterDA. Synthetic lethality in KRas-driven cancer cells created by glutamine deprivation. Oncoscience. 2015;2:807–808. doi:10.18632/oncoscience.25326682255
  • FengF-B, QiuHY. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother. 2018;102:1209–1220. doi:10.1016/j.biopha.2018.03.14229710540
  • EngelmanJA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–562. doi:10.1038/nrc266419629070
  • PolivkaJ, JankuF. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–175. doi:10.1016/j.pharmthera.2013.12.00424333502
  • UrtasunR, LopategiA, GeorgeJ, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α Vβ 3 engagement and PI3K/pAkt/NFκB signaling. Hepatology. 2012;55:594–608. doi:10.1002/hep.2470121953216
  • PengR, YuanY. Antifibrotic effects of tanshinol in experimental hepatic fibrosis by targeting PI3K/AKT/mTOR/p70S6K1 signaling pathways. Discov Med. 2017.
  • ShevchenkoI, BazhinAV. Metabolic checkpoints: novel avenues for immunotherapy of cancer. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.01816.
  • BrennerC, GalluzziL, KeppO, KroemerG. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–594. doi:10.1016/j.jhep.2013.03.03323567086
  • LueddeT, KaplowitzN, SchwabeRF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–783.e4. doi:10.1053/j.gastro.2014.07.01825046161
  • FallahA, SadeghiniaA, KahrobaH, et al. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother. 2019;110:775–785. doi:10.1016/J.BIOPHA.2018.12.02230554116
  • XueD, ZhouX, QiuJ. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother. 2020;131:110676. doi:10.1016/j.biopha.2020.11067632858502
  • PayandehZ, TazehkandAP, BaratiG, et al. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie. 2020;179:32–45. doi:10.1016/j.biochi.2020.09.01432946993
  • KalkavanH, GreenDR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55. doi:10.1038/cdd.2017.17929053143
  • MukhopadhyayS, GoswamiD, AdiseshaiahPP, et al. Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 2020;80:1630–1643. doi:10.1158/0008-5472.can-19-136331911550
  • YuanR, HuangL, DuL. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharm Res. 2019;142:102–114. doi:10.1016/j.phrs.2019.02.017
  • LeeI, YangC. Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012;84:581–590. doi:10.1016/j.bcp.2012.05.00522587816
  • SteelR, CowanJ, PayerneE, O’ConnellMA, SearceyM. Anti-inflammatory effect of a cell-penetrating peptide targeting the Nrf2/Keap1 interaction. ACS Med Chem Lett. 2012;3:407–410. doi:10.1021/ml300041g22582137
  • BenyonRC, ArthurMJP. Extracellular matrix degradation and the role of hepatic stellate cells, Semin. Semin Liver Dis. 2001;21:373–384. doi:10.1055/s-2001-1755211586466
  • KimDC, JunDW, KwonY, et al. 5-HT 2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int. 2013;33:535–543. doi:10.1111/liv.1211023362947