213
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Thiazolidine Derivatives Attenuate Carrageenan-Induced Inflammatory Pain in Mice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 369-384 | Published online: 04 Feb 2021

References

  • KehletH, JensenTS, WoolfCJ. Persistent postsurgical pain: risk factors and prevention. Lancet. 2006;367(9522):1618–1625. doi:10.1016/S0140-6736(06)68700-X16698416
  • ChristiansonCA, CorrM, FiresteinGS, MobarghaA, YakshTL, SvenssonCI. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain. 2010;151(2):394–403. doi:10.1016/j.pain.2010.07.03020739123
  • NathanJD, PappasTN. Inguinal hernia: an old condition with new solutions. Ann Surg. 2003;238(6 Suppl):S148–157. doi:10.1097/01.sla.0000097796.63010.e814703756
  • VadiveluN, SchreckM, LopezJ, KodumudiG, NarayanD. Pain after mastectomy and breast reconstruction. Am Surg. 2008;74(4):285–296. doi:10.1177/00031348080740040218453290
  • FieldsRD. New culprits in chronic pain. Sci Am. 2009;301(5):50–57. doi:10.1038/scientificamerican1109-50
  • WatkinsLR, HutchinsonMR, LedeboerA, Wieseler-FrankJ, MilliganED, MaierSF. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007;21(2):131–146. doi:10.1016/j.bbi.2006.10.01117175134
  • RenK, TorresR. Role of interleukin-1β during pain and inflammation. Brain Res Rev. 2009;60(1):57–64. doi:10.1016/j.brainresrev.2008.12.02019166877
  • LiZ-Y, ZhangY-P, ZhangJ, et al. The possible involvement of JNK activation in the spinal dorsal horn in bortezomib-induced allodynia: the role of TNF-α and IL-1β. J Anesth. 2016;30(1):55–63. doi:10.1007/s00540-015-2077-x26373954
  • LuX, ZengR, LinJ, et al. Pharmacological basis for use of madecassoside in gouty arthritis: anti-inflammatory, anti-hyperuricemic, and NLRP3 inhibition. Immunopharmacol Immunotoxicol. 2019;41(2):277–284. doi:10.1080/08923973.2019.159072131084401
  • MatsudaM, HuhY, Ji-R-R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth. 2019;33(1):131–139. doi:10.1007/s00540-018-2579-430448975
  • JohnstonIN, MilliganED, Wieseler-FrankJ, et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci. 2004;24(33):7353–7365. doi:10.1523/JNEUROSCI.1850-04.200415317861
  • Pinho-RibeiroFA, ZarpelonAC, FattoriV, et al. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–519. doi:10.1016/j.neuropharm.2016.02.01926907804
  • BarrosCD, AmatoAA, de OliveiraTB, et al. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2, 4-diones as PPARγ ligands. Bioorg Med Chem. 2010;18(11):3805–3811. doi:10.1016/j.bmc.2010.04.04520471839
  • UchôaFDT, da SilvaTG, de LimaM, GaldinoSL, PittaI, CostaTD. Preclinical pharmacokinetic and pharmacodynamic evaluation of thiazolidinone PG15: an anti–inflammatory candidate. J Pharm Pharmacol. 2009;61(3):339–345. doi:10.1211/jpp.61.03.000819222906
  • MaltaD, AraújoLCC, CarrazoniAS, et al. Anti-inflammatory, antiarthritic and antinociceptive activities of 3, 5-disubstituted thiazolidine derivatives. Br J Pharm Res. 2014;4(8):992–1003. doi:10.9734/BJPR/2014/8736
  • HuaXY, SvenssonCI, MatsuiT, FitzsimmonsB, YakshTL, WebbM. Intrathecal minocycline attenuates peripheral inflammation–induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci. 2005;22(10):2431–2440. doi:10.1111/j.1460-9568.2005.04451.x16307586
  • LedeboerA, SloaneEM, MilliganED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115(1–2):71–83. doi:10.1016/j.pain.2005.02.00915836971
  • TsudaM, InoueK, SalterMW. Neuropathic pain and spinal microglia: a big problem from molecules in ‘small’glia. Trends Neurosci. 2005;28(2):101–107. doi:10.1016/j.tins.2004.12.00215667933
  • KhattabMM. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite-and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol. 2006;548(1–3):167–173. doi:10.1016/j.ejphar.2006.08.00716973155
  • ValerioDA, GeorgettiSR, MagroDA, et al. Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production. J Nat Prod. 2009;72(11):1975–1979. doi:10.1021/np900259y19899776
  • LittleJW, DoyleT, SalveminiD. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids. 2012;42(1):75–94. doi:10.1007/s00726-010-0633-020552384
  • BagdasD, AlSharariSD, FreitasK, TracyM, DamajMI. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem Pharmacol. 2015;97(4):590–600. doi:10.1016/j.bcp.2015.04.01325931144
  • FreitasK, GhoshS, CarrollFI, LichtmanAH, DamajMI. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology. 2013;65:156–164. doi:10.1016/j.neuropharm.2012.08.02223079470
  • McCarsonKE. Models of inflammation: carrageenan–or complete freund’s adjuvant (CFA)–induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol. 2015;70(1). doi:10.1002/0471141755.ph0504s70
  • YoonS-Y, PatelD, DoughertyPM. Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience. 2012;221:214–224. doi:10.1016/j.neuroscience.2012.06.02422742905
  • YuG-M, LiuD, YuanN, LiuB-H. Dual role of acid-sensing ion channels 3 in rheumatoid arthritis: destruction or protection? Immunopharmacol Immunotoxicol. 2018;40(4):273–277. doi:10.1080/08923973.2018.148515630035658
  • TownsendEA, NaylorJE, NegusSS, et al. Effects of nalfurafine on the reinforcing, thermal antinociceptive, and respiratory-depressant effects of oxycodone: modeling an abuse-deterrent opioid analgesic in rats. Psychopharmacology. 2017;234(17):2597–2605. doi:10.1007/s00213-017-4652-328567699
  • AbbasM, AlzareaS, PapkeRL, RahmanS. The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-alpha in the hippocampus in mice. Pharmacol Rep. 2019;71(6):1168–1176. doi:10.1016/j.pharep.2019.07.00131655281
  • ChaplanSR, BachF, PogrelJ, ChungJ, YakshT. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63. doi:10.1016/0165-0270(94)90144-97990513
  • TumatiS, Largent-MilnesTM, KeresztesA, et al. Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist. J Neuroimmunol. 2012;244(1–2):23–31. doi:10.1016/j.jneuroim.2011.12.02122285397
  • XieJY, HermanDS, StillerC-O, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci. 2005;25(2):409–416. doi:10.1523/JNEUROSCI.4054-04.200515647484
  • Do AmaralJF, SilvaMIG, de Aquino NetoMRA. Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol Pharm Bull. 2007;30(7):1217–1220. doi:10.1248/bpb.30.121717603156
  • TumatiS, RoeskeWR, VanderahTW, VargaEV. Sustained morphine treatment augments prostaglandin E2-evoked calcitonin gene-related peptide release from primary sensory neurons in a PKA-dependent manner. Eur J Pharmacol. 2010;648(1–3):95–101. doi:10.1016/j.ejphar.2010.08.04220826131
  • EruygurN, KoçyiğitU, TaslimiP, AtaşM, TekinM, Gülçinİ. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S Afr J Bot. 2019;120:141–145. doi:10.1016/j.sajb.2018.04.001
  • MathewS, AbrahamTE. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem Toxicol. 2006;44(2):198–206. doi:10.1016/j.fct.2005.06.01316087283
  • ChineduE, AromeD, AmehFS. A new method for determining acute toxicity in animal models. Toxicol Int. 2013;20(3):224. doi:10.4103/0971-6580.12167424403732
  • IdrisZ, AbbasM, NadeemH. The benzimidazole derivatives, B1 (N-[(1H-benzimidazol-2-yl) methyl]-4-methoxyaniline) and B8 (N-{4-[(1H-benzimidazol-2-yl) methoxy] phenyl} acetamide) attenuate morphine-induced paradoxical pain in mice. Front Neurosci. 2019;13::101. doi:10.3389/fnins.2019.0010130809119
  • RoyS, UkilB, LyndemL, El-NezamiH. Acute and sub-acute toxicity studies on the effect of Senna alata in Swiss Albino mice. Cogent Biol. 2016;2(1):1272166. doi:10.1080/23312025.2016.1272166
  • UkpoGE, EbuehiO, KareemA. Evaluation of moxifloxacin-induced biochemical changes in mice. Indian J Pharm Sci. 2012;74(5):454. doi:10.4103/0250-474X.10842223716875
  • Ji-R-R, StrichartzG. Cell signaling and the genesis of neuropathic pain. Sci STKE. 2004;2004(252):re14–re14.
  • RandićM. Modulation of long-term potentiation of excitatory synaptic transmission in the spinal cord dorsal horn. Synaptic Plast Pain. 2009;219–254.
  • McMahonSB, MalcangioM. Current challenges in glia-pain biology. Neuron. 2009;64(1):46–54. doi:10.1016/j.neuron.2009.09.03319840548
  • MirandaHF, SierraltaF, ArandaN, et al. Antinociception induced by rosuvastatin in murine neuropathic pain. Pharmacol Rep. 2018;70(3):503–508. doi:10.1016/j.pharep.2017.11.01229660653
  • DeLeoJA, YezierskiRP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90(1):1–6. doi:10.1016/S0304-3959(00)00490-511166964
  • GardellLR, WangR, BurgessSE, et al. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci. 2002;22(15):6747–6755. doi:10.1523/JNEUROSCI.22-15-06747.200212151554
  • WardJE, TanX. Peroxisome proliferator activated receptor ligands as regulators of airway inflammation and remodelling in chronic lung disease. PPAR Res. 2007;2007:1–12. doi:10.1155/2007/14983
  • DevchandPR, KellerH, PetersJM, VazquezM, GonzalezFJ, WahliW. The PPARα–leukotriene B4 pathway to inflammation control. Nature. 1996;384(6604):39. doi:10.1038/384039a08900274
  • RicoteM, LiAC, WillsonTM, KellyCJ, GlassCK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature. 1998;391(6662):79. doi:10.1038/341789422508
  • LoVermeJ, RussoR, La RanaG, et al. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-α. J Pharmacol Exp Ther. 2006;319(3):1051–1061. doi:10.1124/jpet.106.11138516997973
  • TaylorBK, DadiaN, YangCB, KrishnanS, BadrM. Peroxisome proliferator-activated receptor agonists inhibit inflammatory edema and hyperalgesia. Inflammation. 2002;26(3):121–127. doi:10.1023/A:101550053111312083418
  • MorgenweckJ, Abdel-AleemO, McNamaraK, DonahueR, BadrM, TaylorB. Activation of peroxisome proliferator-activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema. Neuropharmacology. 2010;58(2):337–345. doi:10.1016/j.neuropharm.2009.10.00819891980
  • BernardoA, MinghettiL. Regulation of glial cell functions by PPAR. J Neurosci Methods. 2008;2008.
  • GriggsRB, DonahueRR, MorgenweckJ, et al. Pioglitazone rapidly reduces neuropathic pain through astrocyte and non-genomic PPARγ mechanisms. Pain. 2015;156(3):469. doi:10.1097/01.j.pain.0000460333.79127.be25599238
  • JiaH-B, WangX-M, QiuL-L. Spinal neuroimmune activation inhibited by repeated administration of pioglitazone in rats after L5 spinal nerve transection. Neurosci Lett. 2013;543:130–135. doi:10.1016/j.neulet.2013.03.04623583338
  • MorenoS, Farioli-VecchioliS, CeruM. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience. 2004;123(1):131–145. doi:10.1016/j.neuroscience.2003.08.06414667448
  • FlohéL, Brigelius-FlohéR, SaliouC, TraberMG, PackerL. Redox regulation of NF-kappa B activation. Free Radic Biol Med. 1997;22(6):1115–1126. doi:10.1016/S0891-5849(96)00501-19034250
  • Popa-WagnerA, MitranS, SivanesanS, ChangE, Buga A-M.RO. S and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:1–14. doi:10.1155/2013/963520
  • RodriguesFS, SouzaMA, MagniDV, et al. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups. PLoS One. 2013;8(10):e78332. doi:10.1371/journal.pone.007833224205200
  • Rosales-CorralS, ReiterRJ, TanD-X, OrtizGG, Lopez-ArmasG. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal. 2010;13(2):193–247. doi:10.1089/ars.2009.262919951033
  • KarameseSA, ToktayE, UnalD, SelliJ, KarameseM, MalkocI. The protective effects of beta-carotene against ischemia/reperfusion injury in rat ovarian tissue. Acta Histochem. 2015;117(8):790–797. doi:10.1016/j.acthis.2015.07.00626254843
  • HsiehC-T, LeeY-J, LeeJW, et al. Interleukin-1 receptor antagonist ameliorates the pain hypersensitivity, spinal inflammation and oxidative stress induced by systemic lipopolysaccharide in neonatal rats. Neurochem Int. 2020;135:104686. doi:10.1016/j.neuint.2020.10468631987865
  • KeebleJE, BodkinJV, LiangL, et al. Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via transient receptor potential vanilloid 1-dependent and independent mechanisms. Pain. 2009;141(1–2):135–142. doi:10.1016/j.pain.2008.10.02519059721
  • NdengeleMM, CuzzocreaS, EspositoE, et al. Cyclooxygenases 1 and 2 contribute to peroxynitrite‐mediated inflammatory pain hypersensitivity. FASEB J. 2008;22(9):3154–3164. doi:10.1096/fj.08-10815918497304
  • WangZ-Q, PorrecaF, CuzzocreaS, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309(3):869–878. doi:10.1124/jpet.103.06415414988418
  • Alemán-González-DuhartD, Tamay-CachF, Correa-BasurtoJ, Padilla-MartínezII, Álvarez-AlmazánS, Mendieta-WejebeJE. In silico design, chemical synthesis and toxicological evaluation of 1, 3-thiazolidine-2, 4-dione derivatives as PPARγ agonists. Regul Toxicol Pharmacol. 2017;86:25–32. doi:10.1016/j.yrtph.2017.02.00828202347