602
Views
21
CrossRef citations to date
0
Altmetric
Review

Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date

, &
Pages 2815-2830 | Published online: 28 Jun 2021

References

  • Global tuberculosis report. Geneva, Switzerland: World Health Organization; 2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf. Accessed 315, 2021.
  • StoverCK, WarrenerP, VanDevanterDR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962–966. doi:10.1038/3501610310879539
  • ThompsonAM, BonnetM, LeeHH, et al. Antitubercular nitroimidazoles revisited: synthesis and activity of the authentic 3-nitro isomer of pretomanid. ACS Med Chem Lett. 2017;8(12):1275–1280. doi:10.1021/acsmedchemlett.7b0035629259747
  • BahugunaA, RawatDS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020;40(1):263–292. doi:10.1002/med.2160231254295
  • ZhangJ, BaY, WangS, YangH, HouX, XuZ. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem. 2019;179:376–388. doi:10.1016/j.ejmech.2019.06.06831260891
  • AngCW, TanL, SykesML, et al. Antitubercular and antiparasitic 2-nitroimidazopyrazinones with improved potency and solubility. J Med Chem. 2020;63(24):15726–15751. doi:10.1021/acs.jmedchem.0c0137233151678
  • MorenoSN, DocampoR. Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis. Environ Health Perspect. 1985;64:199–208. doi:10.1289/ehp.85641993830698
  • SinghR, ManjunathaU, BoshoffHI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008;322(5906):1392–1395. doi:10.1126/science.116457119039139
  • Center for Drug Evaluaton and Research. Approval package for application number 212862Orig1s000. 2019.
  • YuanY, BarryCE 3rd. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1996;93(23):12828–12833. doi:10.1073/pnas.93.23.128288917504
  • PurwantiniE, MukhopadhyayB, SemDS. Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase. PLoS One. 2013;8(12):e81985. doi:10.1371/journal.pone.008198524349169
  • BaptistaR, FazakerleyDM, BeckmannM, BaillieL, MurLAJ. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep. 2018;8(1):5084. doi:10.1038/s41598-018-23110-129572459
  • ChoiKP, KendrickN, DanielsL. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F(420) and FO biosynthesis. J Bacteriol. 2002;184(9):2420–2428. doi:10.1128/JB.184.9.2420-2428.200211948155
  • HaverHL, ChuaA, GhodeP, et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(9):5316–5323. doi:10.1128/AAC.00308-1526100695
  • ManjunathaUH, BoshoffH, DowdCS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(2):431–436. doi:10.1073/pnas.050839210316387854
  • WenS, JingW, ZhangT, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 2019;38(7):1293–1296. doi:10.1007/s10096-019-03551-w30953211
  • KaduraS, KingN, NakhoulM, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75(8):2031–2043. doi:10.1093/jac/dkaa13632361756
  • BashiriG, AntoneyJ, JirgisENM, et al. A revised biosynthetic pathway for the cofactor F(420) in prokaryotes. Nat Commun. 2019;10(1):1558. doi:10.1038/s41467-019-09534-x30952857
  • RifatD, LiSY, IoergerT, et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2020;65:1. doi:10.1128/AAC.01948-20
  • SassettiCM, BoydDH, RubinEJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003;48(1):77–84. doi:10.1046/j.1365-2958.2003.03425.x12657046
  • SassettiCM, RubinEJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;100(22):12989–12994. doi:10.1073/pnas.213425010014569030
  • ZhangYJ, IoergerTR, HuttenhowerC, et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog. 2012;8(9):e1002946. doi:10.1371/journal.ppat.100294623028335
  • RengarajanJ, BloomBR, RubinEJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2005;102(23):8327–8332. doi:10.1073/pnas.050327210215928073
  • DuttaNK, MehraS, DidierPJ, et al. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis. 2010;201(11):1743–1752. doi:10.1086/65249720394526
  • LeeBM, HaroldLK, AlmeidaDV, et al. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathog. 2020;16(2):e1008287. doi:10.1371/journal.ppat.100828732032366
  • GurumurthyM, RaoM, MukherjeeT, et al. A novel F(420) -dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol. 2013;87(4):744–755. doi:10.1111/mmi.1212723240649
  • KlitgaardRN, NtokouE, NørgaardK, et al. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance. Antimicrob Agents Chemother. 2015;59(6):3518–3528. doi:10.1128/AAC.00179-1525845869
  • MakafeGG, CaoY, TanY, et al. Role of the Cys154Arg substitution in ribosomal protein L3 in oxazolidinone resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(5):3202–3206. doi:10.1128/AAC.00152-1626953211
  • FujiwaraM, KawasakiM, HariguchiN, LiuY, MatsumotoM. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb). 2018;108:186–194. doi:10.1016/j.tube.2017.12.00629523322
  • McGrathM, Gey van PittiusNC, van HeldenPD, WarrenRM, WarnerDF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014;69(2):292–302. doi:10.1093/jac/dkt36424072169
  • HarperJ, SkerryC, DavisSL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012;205(4):595–602. doi:10.1093/infdis/jir78622198962
  • LiS-Y, TasneenR, TyagiS, et al. Bactericidal and sterilizing activity of a novel regimen with bedaquiline, pretomanid, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017;61(9):9. doi:10.1128/AAC.00913-17
  • TyagiS, NuermbergerE, YoshimatsuT, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2005;49(6):2289–2293. doi:10.1128/AAC.49.6.2289-2293.200515917523
  • HurdleJG, LeeRB, BudhaNR, et al. A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. J Antimicrob Chemother. 2008;62(5):1037–1045. doi:10.1093/jac/dkn30718693235
  • HartkoornRC, RyabovaOB, ChiarelliLR, RiccardiG, MakarovV, ColeST. Mechanism of action of 5-nitrothiophenes against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2944–2947. doi:10.1128/AAC.02693-1324550336
  • FranzblauSG, DeGrooteMA, ChoSH, et al. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb). 2012;92(6):453–488. doi:10.1016/j.tube.2012.07.00322940006
  • UptonAM, ChoS, YangTJ, et al. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(1):136–144. doi:10.1128/AAC.03823-1425331696
  • ZhangF, LiS, WenS, et al. Comparison of in vitro susceptibility of mycobacteria against PA-824 to identify key residues of Ddn, the deazoflavin-dependent nitroreductase from Mycobacterium tuberculosis. Infect Drug Resist. 2020;13:815–822. doi:10.2147/IDR.S24071632210596
  • ZhuangZ, WanD, DingJ, et al. Synergistic activity of nitroimidazole-oxazolidinone conjugates against anaerobic bacteria. Molecules. 2020;25(10):10. doi:10.3390/molecules25102431
  • MatsumotoM, HashizumeH, TomishigeT, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466. doi:10.1371/journal.pmed.003046617132069
  • StottKE, PertinezH, SturkenboomMGG, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–2313. doi:10.1093/jac/dky15229701775
  • DaskapanA, IdrusLR, PostmaMJ, et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–766. doi:10.1007/s40262-018-0716-830406475
  • Abdel-RahmanSM. CPMT project no. 16-020: review of evidence on the use of delamanid supplementing MDR-TB treatment regimens in children aged 6 years and above. Technical Study report prepared for the World Health Organization. Final Report. Geneva, Switzerland. 7 1, 2016.
  • LenaertsAJ, GruppoV, MariettaKS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother. 2005;49(6):2294–2301. doi:10.1128/AAC.49.6.2294-2301.200515917524
  • DuttaNK, KarakousisPC. PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. Int J Antimicrob Agents. 2014;44(6):564–566. doi:10.1016/j.ijantimicag.2014.07.01225270632
  • LanoixJP, BetoudjiF, NuermbergerE. Novel regimens identified in mice for treatment of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2014;58(4):2316–2321. doi:10.1128/AAC.02658-1324492372
  • TasneenR, WilliamsK, AmoabengO, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother. 2015;59(1):129–135. doi:10.1128/AAC.03822-1425331697
  • DuttaNK, AlsultanA, GniadekTJ, et al. Potent rifamycin-sparing regimen cures guinea pig tuberculosis as rapidly as the standard regimen. Antimicrob Agents Chemother. 2013;57(8):3910–3916. doi:10.1128/AAC.00761-1323733473
  • AhmadZ, PeloquinCA, SinghRP, et al. PA-824 exhibits time-dependent activity in a murine model of tuberculosis. Antimicrob Agents Chemother. 2011;55(1):239–245. doi:10.1128/AAC.00849-1020937781
  • DrusanoGL, NeelyMN, KimS, et al. Building optimal three-drug combination chemotherapy regimens. Antimicrob Agents Chemother. 2020;64(11):11. doi:10.1128/AAC.01610-20
  • DrusanoGL, KimS, AlmoslemM, et al. The funnel: a screening technique for identifying optimal two-drug combination chemotherapy regimens. Antimicrob Agents Chemother. 2021;65:2.
  • MuliaditanM, Della PasquaO. Evaluation of pharmacokinetic-pharmacodynamic relationships and selection of drug combinations for tuberculosis. Br J Clin Pharmacol. 2021;87(1):140–151. doi:10.1111/bcp.1437132415743
  • DawsonR, DiaconAH, EverittD, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet. 2015;385(9979):1738–1747. doi:10.1016/S0140-6736(14)62002-X25795076
  • DiaconAH, DawsonR, Du BoisJ, et al. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother. 2012;56(6):3027–3031. doi:10.1128/AAC.06125-1122430968
  • DiaconAH, DawsonR, von Groote-bidlingmaierF, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015;191(8):943–953. doi:10.1164/rccm.201410-1801OC25622149
  • DiaconAH, DawsonR, von Groote-bidlingmaierF, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012;380(9846):986–993. doi:10.1016/S0140-6736(12)61080-022828481
  • NedelmanJR, SalingerDH, SubramoneyV, et al. An exposure-response perspective on the clinical dose of pretomanid. Antimicrob Agents Chemother. 2020;65(1):1. doi:10.1128/AAC.01121-20
  • LyonsMA. Pretomanid dose selection for pulmonary tuberculosis: an application of multi-objective optimization to dosage regimen design. CPT. 2021;10(3):211–219.
  • Center for Drug Evaluaton and Research. Product quality review for application number 212862Orig1s000. 10 15, 2017.
  • LyonsMA. Modeling and simulation of pretomanid pharmacokinetics in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2018;62(7). doi:10.1128/AAC.02359-17
  • GinsbergAM, LaurenziMW, RouseDJ, WhitneyKD, SpigelmanMK. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother. 2009;53(9):3720–3725. doi:10.1128/AAC.00106-0919528280
  • WinterH, GinsbergA, EgiziE, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother. 2013;57(11):5516–5520. doi:10.1128/AAC.00798-1323979737
  • IgnatiusEH, AbdelwahabMT, HendricksB, et al. Pretomanid pharmacokinetics in the presence of rifamycins: interim results from a randomized trial among patients with tuberculosis. Antimicrob Agents Chemother. 2021;65(2):2. doi:10.1128/AAC.01196-20
  • Pretomanid [labeling]. New York: Mylan; 2019.
  • ShoboA, BratkowskaD, BaijnathS, et al. Tissue distribution of pretomanid in rat brain via mass spectrometry imaging. Xenobiotica. 2016;46(3):247–252. doi:10.3109/00498254.2015.106793526207565
  • Center for Drug Evaluaton and Research. Multidisciplinary review for application number 212862Orig1s000. 8 13, 2019.
  • DooleyKE, LuetkemeyerAF, ParkJG, et al. Phase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin. Antimicrob Agents Chemother. 2014;58(9):5245–5252. doi:10.1128/AAC.03332-1424957823
  • WinterH, EgiziE, EronduN, et al. Evaluation of pharmacokinetic interaction between PA-824 and midazolam in healthy adult subjects. Antimicrob Agents Chemother. 2013;57(8):3699–3703. doi:10.1128/AAC.02632-1223689718
  • WangL, XuY, LiangL, et al. LC-MS/MS method for the simultaneous determination of PA-824, moxifloxacin and pyrazinamide in rat plasma and its application to pharmacokinetic study. J Pharm Biomed Anal. 2014;97:1–8. doi:10.1016/j.jpba.2014.03.04624798753
  • WangL, ZhaoJ, ZhangR, et al. Drug-Drug interactions between PA-824 and darunavir based on pharmacokinetics in rats by LC-MS-MS. J Chromatogr Sci. 2018;56(4):327–335. doi:10.1093/chromsci/bmy00229373758
  • GinsbergAM, LaurenziMW, RouseDJ, WhitneyKD, SpigelmanMK. Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects. Antimicrob Agents Chemother. 2009;53(9):3726–3733. doi:10.1128/AAC.00112-0919528286
  • LiH, SalingerDH, EverittD, et al. Long-term effects on QT prolongation of pretomanid alone and in combinations in patients with tuberculosis. Antimicrob Agents Chemother. 2019;63(10). doi:10.1128/AAC.00445-19
  • Pretomanid. Drugs and Lactation Database (Lactmed). Bethesda (MD): National Library of Medicine (US); 2020.
  • MieleK, Bamrah MorrisS, TepperNK. Tuberculosis in pregnancy. Obstet Gynecol. 2020;135(6):1444–1453. doi:10.1097/AOG.000000000000389032459437
  • ConradieF, DiaconAH, NgubaneN, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382(10):893–902. doi:10.1056/NEJMoa190181432130813
  • HowellP. Final results of the NIX-TB clinical study of BPaL regimen for highly resistant tuberculosis. Presented at: Conference on Retroviruses and Opprotunistic Infections; 3 6–10, 2021; Virtual Platform.
  • HaleyCA, MaciasP, JasujaS, et al. Novel 6-month treatment for drug-resistant tuberculosis, United States. Emerg Infect Dis. 2021;27(1):332–334. doi:10.3201/eid2701.203766
  • TweedCD, WillsGH, CrookAM, et al. A partially randomised trial of pretomanid, moxifloxacin and pyrazinamide for pulmonary TB. Int J Tuberc Lung Dis. 2021;25(4):305–314. doi:10.5588/ijtld.20.051333762075
  • TweedCD, DawsonR, BurgerDA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med. 2019;7(12):1048–1058. doi:10.1016/S2213-2600(19)30366-231732485
  • TB Alliance. Pretomanid sponsor briefing document for the antimicrobial drugs advisory committee. Available from: https://www.fda.gov/media/127593/download. Accessed 35, 2021.
  • World Health Organization. Guidelines approved by the guidelines review committee. In: WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment - Drug-Resistant Tuberculosis Treatment. Geneva: World Health Organization © World Health Organization 2020; 2020.
  • MirzayevF, VineyK, LinhNN, et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J. 2020. doi:10.1183/13993003.03300-2020
  • SweeneyS, GomezG, KitsonN, et al. Cost-effectiveness of new MDR-TB regimens: study protocol for the TB-PRACTECAL economic evaluation substudy. BMJ Open. 2020;10(10):e036599. doi:10.1136/bmjopen-2019-036599