298
Views
35
CrossRef citations to date
0
Altmetric
Original Research

Prediction of Targets of Curculigoside A in Osteoporosis and Rheumatoid Arthritis Using Network Pharmacology and Experimental Verification

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 5235-5250 | Published online: 26 Nov 2020

References

  • LacativaPGS, FariasM. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010;54(2):123–132. doi:10.1590/S0004-2730201000020000720485900
  • TangC-H. Research of Pathogenesis and Novel Therapeutics in Arthritis. Int J Mol Sci. 2019;20(7):1646. doi:10.3390/ijms20071646
  • SmolenJS, AletahaD, KoellerM, WeismanMH, EmeryP. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370(9602):1861–1874. doi:10.1016/S0140-6736(07)60784-317570481
  • ShenB, New GoldenA. Age of Natural Products Drug Discovery. Cell. 2015;163(6):1297–1300. doi:10.1016/j.cell.2015.11.03126638061
  • PengW, HanT, XinWB, et al. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala. Med Chem Res. 2011;20(2):146–151. doi:10.1007/s00044-010-9311-8
  • LiX, YangX, CaiY, et al. Proanthocyanidins from Grape Seeds Modulate the NF-κB Signal Transduction Pathways in Rats with TNBS-Induced Ulcerative Colitis. Molecules. 2011;16(8):6721–6731. doi:10.3390/molecules1608672125134774
  • JiangQ, YiM, GuoQ, et al. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. Int Immunopharmacol. 2015;29(2):370–376. doi:10.1016/j.intimp.2015.10.02726507165
  • LiS, ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.1016/s1875-5364(13)60037-023787177
  • WangX, ZhangM, ZhangD, et al. Structural elucidation and anti-osteoporosis activities of polysaccharides obtained from Curculigo orchioides. Carbohydr Polym. 2019;203:292–301. doi:10.1016/j.carbpol.2018.09.05930318216
  • DingH, GaoG, ZhangL, et al. The protective effects of curculigoside A on adjuvant-induced arthritis by inhibiting NF-кB/NLRP3 activation in rats. Int Immunopharmacol. 2016;30:43–49. doi:10.1016/j.intimp.2015.11.026
  • WangL, HeY-J, HanT, et al. Metabolites of curculigoside in rats and their antiosteoporotic activities in osteoblastic MC3T3-E1 cells. Fitoterapia. 2017;117:109–117. doi:10.1016/j.fitote.2017.01.00928126417
  • TanS, XuJ, LaiA, et al. Curculigoside exerts significant anti‑arthritic effects in vivo and in vitro via regulation of the JAK/STAT/NF‑κB signaling pathway. Mol Med Report. 2019;19(3):2057–2064. doi:10.3892/mmr.2019.9854
  • HopkinsAL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1111. doi:10.1038/nbt1007-111017921993
  • WangZ, LiuJ, YuY, ChenY, WangY. Modular pharmacology: the next paradigm in drug discovery.. Expert Opin Drug Discov. 2012;7(8):667–677. doi:10.1517/17460441.2012.69267322680068
  • ZengL, YangK, LiuH, ZhangG. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids. Exp Ther Med. 2017;14(5):4697–4710. doi:10.3892/etm.2017.517029201170
  • TianJS, MengY, WuYF, et al. A novel insight into the underlying mechanism of Baihe Dihuang Tang improving the state of psychological suboptimal health subjects obtained from plasma metabolic profiles and network analysis. J Pharm Biomed Anal. 2019;169:99–110. doi:10.1016/j.jpba.2019.02.04130849741
  • ShiXQ, YueSJ, TangYP, et al. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. J Ethnopharmacol. 2019;235:227–242. doi:10.1016/j.jep.2019.01.02730703496
  • WangN, ZhaoG, ZhangY, et al. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo Orchioides in the Treatment of Osteoporosis. Med Sci Monit. 2017;23:5113–5122. doi:10.12659/MSM.90426429074841
  • WangJ, LiY, YangY, et al. A New Strategy for Deleting Animal drugs from Traditional Chinese Medicines based on Modified Yimusake Formula. Sci Rep. 2017;7(1):1504. doi:10.1038/s41598-017-01613-728473709
  • RuJ, LiP, WangJ, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi:10.1186/1758-2946-6-1324735618
  • DainaA, MichielinO, ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi:10.1038/srep4271728256516
  • YaoZJ, DongJ, CheYJ, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J Comput Aided Mol Des. 2016;30(5):413–424. doi:10.1007/s10822-016-9915-227167132
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi:10.1093/nar/gkz38231106366
  • Warde-FarleyD, DonaldsonSL, ComesO, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(WebServer issue):W214–220. doi:10.1093/nar/gkq53720576703
  • Huang daW, ShermanBT, LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi:10.1038/nprot.2008.21119131956
  • LipinskiCA, LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:1–3. doi:10.1016/S0169-409X(00)00129-0
  • WangL, SongG, ZhengY, et al. miR-573 is a negative regulator in the pathogenesis of rheumatoid arthritis. Cell Mol Immunol. 2016;13(6):839–849. doi:10.1038/cmi.2015.6326166764
  • KimJ-E, SonJE, JungSK, et al. Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr. 2010;104(7):957–964. doi:10.1017/S000711451000170420550744
  • YuT, WuQ, YouX, et al. Tomatidine Alleviates Osteoporosis by Downregulation of p53. Med Sci Monit. 2020;26:e923996. doi:10.12659/MSM.92399632300098
  • MaJ-D, JingJ, WangJ-W, et al. A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Res Ther. 2019;21(1):153. doi:10.1186/s13075-019-1935-631234900
  • FengP, ZhangH, ZhangZ, et al. The interaction of MMP-2/B7-H3 in human osteoporosis. Clin Immunol. 2016;162:118–124. doi:10.1016/j.clim.2015.11.00926631755
  • QinS, SunD, LiH, et al. The Effect of SHH-Gli Signaling Pathway on the Synovial Fibroblast Proliferation in Rheumatoid Arthritis. Inflammation. 2016;39(2):503–512. doi:10.1007/s10753-015-0273-326552406
  • SimannM, Le BlancS, SchneiderV, et al. Canonical FGFs Prevent Osteogenic Lineage Commitment and Differentiation of Human Bone Marrow Stromal Cells Via ERK1/2 Signaling. J Cell Biochem. 2017;118(2):263–275. doi:10.1002/jcb.2563127305863
  • JiaoY, DingH, HuangS, et al. Bcl-XL and Mcl-1 upregulation by calreticulin promotes apoptosis resistance of fibroblast-like synoviocytes via activation of PI3K/Akt and STAT3 pathways in rheumatoid arthritis. Clin Exp Rheumatol. 2018;36(5):841–849.29652658
  • LiuZ, GuoF, WangY, et al. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci Rep. 2016;6(1):21146. doi:10.1038/srep2114626879404
  • XuH-Y, ZhangY-Q, LiuZ-M, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(D1):D976–D982. doi:10.1093/nar/gky98730365030
  • ZhangR-Z, YuS-J, BaiH, NingK. TCM-Mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep. 2017;7(1):2821. doi:10.1038/s41598-017-03039-728588237
  • ChengF, KovácsIA, BarabásiA-L. Network-based prediction of drug combinations. Nat Commun. 2019;10(1):1197. doi:10.1038/s41467-019-09186-x30867426
  • KibbleM, SaarinenN, TangJ, WennerbergK, MäkeläS, AittokallioT. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–1266. doi:10.1039/c5np00005j26030402
  • YeH, WeiJ, TangK, FeuersR, HongH. Drug Repositioning Through Network Pharmacology. Curr Top Med Chem. 2016;16(30):3646–3656. doi:10.2174/156802661666616053018132827334200
  • JingC, SunZ, XieX, et al. Network pharmacology-based identification of the key mechanism of Qinghuo Rougan Formula acting on uveitis. Biomed Pharmacother. 2019;120:109381. doi:10.1016/j.biopha.2019.10938131542616
  • RenL, ZhengX, LiuJ, et al. Network pharmacology study of traditional Chinese medicines for stroke treatment and effective constituents screening. J Ethnopharmacol. 2019;242:112044. doi:10.1016/j.jep.2019.11204431255722
  • PoornimaP, KumarJD, ZhaoQ, BlunderM, EfferthT. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res. 2016;111:290–302. doi:10.1016/j.phrs.2016.06.01827329331
  • HuR-F, SunX-B. Design of new traditional Chinese medicine herbal formulae for treatment of type 2 diabetes mellitus based on network pharmacology. Chin J Nat Med. 2017;15(6):436–441. doi:10.1016/S1875-5364(17)30065-128629533
  • XueJ, ShiY, LiC, SongH. Network pharmacology-based prediction of the active ingredients, potential targets, and signaling pathways in compound Lian-Ge granules for treatment of diabetes. J Cell Biochem. 2019;120(4):6431–6440. doi:10.1002/jcb.2793330362298
  • HuaY-L, MaQ, YuanZ-W, et al. A novel approach based on metabolomics coupled with network pharmacology to explain the effect mechanisms of Danggui Buxue Tang in anaemia. Chin J Nat Med. 2019;17(4):275–290. doi:10.1016/S1875-5364(19)30031-731076131
  • GuoW, HuangJ, WangN, et al. Integrating Network Pharmacology and Pharmacological Evaluation for Deciphering the Action Mechanism of Herbal Formula Zuojin Pill in Suppressing Hepatocellular Carcinoma. Front Pharmacol. 2019;10:1185. doi:10.3389/fphar.2019.0118531649545
  • TaoW, XuX, WangX, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145:1. doi:10.1016/j.jep.2012.09.05123142198
  • ZuoJ, WangX, LiuY, et al. Integrating Network Pharmacology and Metabolomics Study on Anti-rheumatic Mechanisms and Antagonistic Effects Against Methotrexate-Induced Toxicity of Qing-Luo-Yin. Front Pharmacol. 2018;9:1472. doi:10.3389/fphar.2018.0147230618762
  • McNiffP, SvenssonL, PazolesCJ, GabelCA. Tenidap modulates cytoplasmic pH and inhibits anion transport in vitro. I. Mechanism and evidence of functional significance. J Immunol. 1994;153(5):2180–2193.8051419
  • GosseltHR, van ZelstBD, de RotteMCFJ, HazesJMW, de JongeR, HeilSG. Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res Ther. 2019;21(1):157. doi:10.1186/s13075-019-1936-531242943
  • Alonso-AperteE, Varela-MoreirasG. Drugs-nutrient interactions: a potential problem during adolescence. Eur J Clin Nutr. 2000;54(Suppl 1):S69–S74. doi:10.1038/sj.ejcn.1600989
  • Noronha-MatosJB, Correia-de-SáP. Mesenchymal Stem Cells Ageing: targeting the “Purinome” to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol. 2016;231(9):1852–1861. doi:10.1002/jcp.2530326754327
  • SuX, FloydDH, HughesA, et al. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest. 2012;122(10):3579–3592. doi:10.1172/JCI3857622996695
  • SmallwoodMJ, NissimA, KnightAR, WhitemanM, HaighR, WinyardPG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med. 2018;125. doi:10.1016/j.freeradbiomed.2018.05.08629803807
  • KhojahHM, AhmedS, Abdel-RahmanMS, HamzaA-B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic Biol Med. 2016;97:285–291. doi:10.1016/j.freeradbiomed.2016.06.02027344969
  • Sapir-KorenR, LivshitsG. Postmenopausal osteoporosis in rheumatoid arthritis: the estrogen deficiency-immune mechanisms link. Bone. 2017;103:102–115. doi:10.1016/j.bone.2017.06.02028666971
  • Chrzanowska-WodnickaM. Distinct functions for Rap1 signaling in vascular morphogenesis and dysfunction. Exp Cell Res. 2013;319(15):2350–2359. doi:10.1016/j.yexcr.2013.07.02223911990
  • JeevaratnamK, SalvageSC, LiM, HuangCLH. Regulatory actions of 3ʹ,5ʹ-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling. Ann N Y Acad Sci. 2018;1433(1):18–28. doi:10.1111/nyas.1386129846007
  • LeechMT, MorandEF. Fibroblasts and synovial immunity. Curr Opin Pharmacol. 2013;13(4):565–569. doi:10.1016/j.coph.2013.04.00123611654
  • ZhangHG, WangY, XieJF, et al. Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum. 2001;44(7):1555–1567. doi:10.1002/1529-0131(200107)44:7<1555::AID-ART279>3.0.CO;2-M11465707
  • SongB, LiX-F, YaoY, et al. BMP9 inhibits the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis via the PI3K/AKT signaling pathway. Int Immunopharmacol. 2019;74:105685. doi:10.1016/j.intimp.2019.10568531203157
  • CahillCM, RogersJT. Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem. 2008;283(38):25900–25912. doi:10.1074/jbc.M70769220018515365
  • HuJ, MaoZ, HeS, et al. Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3β/β-catenin integrated signaling pathway. Biochem Pharmacol. 2017;136:109–121. doi:10.1016/j.bcp.2017.04.01028408345
  • LiuW, ZhangY, ZhuW, et al. Sinomenine Inhibits the Progression of Rheumatoid Arthritis by Regulating the Secretion of Inflammatory Cytokines and Monocyte/Macrophage Subsets. Front Immunol. 2018;9:2228. doi:10.3389/fimmu.2018.0222830319663
  • ZhangN, XuC, LiN, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv. 2018;25(1):1182–1191. doi:10.1080/10717544.2018.147267729790372
  • SioutiE, AndreakosE. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 2019;165:152–169. doi:10.1016/j.bcp.2019.03.02930910693
  • UdalovaIA, MantovaniA, FeldmannM. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol. 2016;12(8):472–485. doi:10.1038/nrrheum.2016.9127383913
  • LiuZ, SongL, WangY, et al. A novel fusion protein attenuates collagen-induced arthritis by targeting interleukin 17A and tumor necrosis factor α. Int J Pharm. 2018;547(1–2):72–82. doi:10.1016/j.ijpharm.2018.05.05829803792
  • BoutetM-A, NajmA, BartG, et al. IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. Ann Rheum Dis. 2017;76(7):1304–1312.28288964
  • PanY-J, WangW-H, HuangT-Y, et al. Quetiapine ameliorates collagen-induced arthritis in mice via the suppression of the AKT and ERK signaling pathways. Inflamm Res. 2018;67(10):847–861. doi:10.1007/s00011-018-1176-130109356
  • HanE-J, KimHY, LeeN, et al. Suppression of NFAT5-mediated Inflammation and Chronic Arthritis by Novel κB-binding Inhibitors. EBioMedicine. 2017;18:261–273. doi:10.1016/j.ebiom.2017.03.03928396011