265
Views
21
CrossRef citations to date
0
Altmetric
Review

Repurposing Anti-Cancer Drugs for COVID-19 Treatment

, & ORCID Icon
Pages 5045-5058 | Published online: 18 Nov 2020

References

  • World Health Organization. Pneumonia of Unknown Cause - China; 2020.
  • GreinJ, OhmagariN, ShinD, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327–2336. doi:10.1056/NEJMoa200701632275812
  • BeigelJH, TomashekKM, DoddLE, et al. Remdesivir for the treatment of Covid-19 — final report. N Engl J Med. 2020. doi:doi:10.1056/NEJMoa2007764
  • GoldmanJD, LyeDCB, HuiDS, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020. doi:doi:10.1056/nejmoa2015301
  • SpinnerCD, GottliebRL, CrinerGJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. 2020;324(11):1048–1057. doi:doi:10.1001/jama.2020.1634932821939
  • WangY, ZhangD, DuG, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020.
  • PanH, PetoR, KarimQA, et al. Repurposed antiviral drugs for COVID-19; interim WHO SOLIDARITY trial results. medRxiv. 2020.
  • KalilAC. Treating COVID-19 - off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA. 2020. doi:10.1001/jama.2020.4742
  • CaoB, WangY, WenD, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–1799. doi:10.1056/NEJMoa200128232187464
  • HorbyP, LimWS, EmbersonJ, et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv. 2020. doi:10.1101/2020.06.22.20137273
  • ChenJ, LiuD, LiuL, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Medical Sci). 2020;49(1).
  • GelerisJ, SunY, PlattJ, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411–2418. doi:doi:10.1056/NEJMoa201241032379955
  • BoulwareDR, PullenMF, BangdiwalaAS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517–525. doi:doi:10.1056/nejmoa201663832492293
  • TangW, CaoZ, HanM, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020:m1849. doi:doi:10.1136/bmj.m1849.32409561
  • CalyL, DruceJD, CattonMG, JansDA, WagstaffKM, TheFD. A-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi:doi:10.1016/j.antiviral.2020.10478732251768
  • DuanK, LiuB, LiC, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci. 2020;117(17):9490–9496. doi:doi:10.1073/pnas.200416811732253318
  • ChenL, XiongJ, BaoL, ShiY. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020. doi:doi:10.1016/S1473-3099(20)30141-9
  • BertoliniF, SukhatmeVP, BoucheG. Drug repurposing in oncology—patient and health systems opportunities. Nat Rev Clin Oncol. 2015;12(12):732–742. doi:doi:10.1038/nrclinonc.2015.16926483297
  • PantziarkaP, VandeborneL, MeheusL, BoucheG. Covid19db – an online database of trials of medicinal products to prevent or treat COVID-19, with a specific focus on drug repurposing. medRxiv. 2020. doi:doi:10.1101/2020.05.27.20114371
  • YangZ, LiuJ, ZhouY, ZhaoX, ZhaoQ, LiuJ. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020;81(1):e13–e20. doi:doi:10.1016/j.jinf.2020.03.06232283144
  • World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Geneva; 2020.
  • ChenT, WuD, ChenH, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368.
  • HuangC, WangY, LiX, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-531986264
  • PoissyJ, GoutayJ, CaplanM, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020;142(2):184–186. doi:10.1161/circulationaha.120.04743032330083
  • HelmsJ, TacquardC, SeveracF, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi:10.1007/s00134-020-06062-x32367170
  • KlokFA, KruipMJHA, van der MeerNJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. doi:10.1016/j.thromres.2020.04.013
  • TangN, LiD, WangX, SunZ. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi:10.1111/jth.1476832073213
  • ConnorsJM, LevyJH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2040. doi:10.1182/blood.202000600032339221
  • RanucciM, BallottaA, Di DeddaU, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–1751. doi:10.1111/jth.1485432302448
  • CopinMC, ParmentierE, DuburcqT, et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46(6):1124–1126. doi:10.1007/s00134-020-06057-832328726
  • GuoY, XuF, LuT, DuanZ, ZhangZ. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38(7):904–910. doi:10.1016/j.ctrv.2012.04.00722651903
  • MishraAK, DingliD. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia. 2019;33(11):2695–2709. doi:10.1038/s41375-019-0470-430988378
  • TanakaT, NarazakiM, KishimotoT. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8(8):959–970. doi:10.2217/imt-2016-002027381687
  • LeRQ, LiL, YuanW, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell‐induced severe or life‐threatening cytokine release syndrome. Oncologist. 2018;23(8):943. doi:10.1634/theoncologist.2018-002829622697
  • FuB, XuX, WeiH. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 2020;18(1):1–5. doi:10.1186/s12967-020-02339-331900168
  • ZhouY, FuB, ZhengX, WangD, ZhaoC. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020.
  • ChenX, ZhaoB, QuY, et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa449
  • LuoP, LiuY, QiuL, LiuX, LiuD, LiJ. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92(7):814–818. doi:10.1002/jmv.2580132253759
  • ZhangX, SongK, TongF, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4(7):1307. doi:10.1182/bloodadvances.202000190732243501
  • XuX, HanM, LiT, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970–10975. doi:10.1073/pnas.200561511732350134
  • ToniatiP, PivaS, CattaliniM, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568. doi:10.1016/j.autrev.2020.10256832376398
  • KewanT, CovutF, Al–JaghbeerMJ, RoseL, GopalakrishnaKV, AkbikB. Tocilizumab for treatment of patients with severe COVID–19: a retrospective cohort study. EClinicalMedicine. 2020;24:100418. doi:10.1016/j.eclinm.2020.10041832766537
  • GuaraldiG, MeschiariM, Cozzi-LepriA, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474–e484. doi:10.1016/S2665-9913(20)30173-932835257
  • CareyAJ, TanCK, UlettGC. Infection-induced IL-10 and JAK-STAT: A review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes. Jak-Stat. 2012;1(3):159–167. doi:10.4161/jkst.1991824058765
  • La RoséeF, BremerHC, GehrkeI, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34:1805–1815.32518419
  • StebbingJ, PhelanA, GriffinI, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402. doi:10.1016/S1473-3099(20)30132-832113509
  • GavegnanoC, DetorioM, MonteroC, BosqueA, PlanellesV, SchinaziRF. Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro. Antimicrob Agents Chemother. 2014;58(4):1977–1986. doi:10.1128/AAC.02496-1324419350
  • BoorPPC, de RuiterPE, AsmawidjajaPS, LubbertsE, van der LaanLJW, KwekkeboomJ. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa. Transl Res. 2017;188(188):67–79. doi:10.1016/j.trsl.2016.11.00627931982
  • CantiniF, NiccoliL, NanniniC, et al. Beneficial impact of Baricitinib in COVID-19 moderate pneumonia; multicentre study. J Infect. 2020;S0163–4453(20):30433. doi:10.1016/j.jinf.2020.06.052
  • MigitaK, IzumiY, JiuchiY, et al. Effects of J anus kinase inhibitor tofacitinib on circulating serum amyloid A and interleukin‐6 during treatment for rheumatoid arthritis. Clin Exp Immunol. 2014;175(2):208–214. doi:10.1111/cei.1223424665995
  • WuD, YangXO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368–370. doi:10.1016/j.jmii.2020.03.00532205092
  • SadlerAJ, WilliamsBRG. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8(7):559–568. doi:10.1038/nri231418575461
  • WelshRM, BahlK, MarshallHD, UrbanSL. Type 1 interferons and antiviral CD8 T-cell responses. PLoS Pathog. 2012;8:1.
  • HungIFN, LungKC, TsoEYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–1704. doi:10.1016/S0140-6736(20)31042-432401715
  • SleijferS, BanninkM, Van GoolAR, KruitWHJ, StoterG. Side effects of interferon-α therapy. Pharm World Sci. 2005;27(6):423–431. doi:10.1007/s11096-005-1319-716341948
  • RaisonCL, DemetrashviliM, CapuronL, MillerAH. Neuropsychiatric adverse effects of interferon-α: recognition and management. CNS Drugs. 2005. doi:10.2165/00023210-200519020-00002
  • KeatingGM. Bevacizumab: a review of its use in advanced cancer. Drugs. 2014;74(16):1891–1925.25315029
  • SinghAK, GuptaR, MisraA. Comorbidities in COVID-19: outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr Clin Res Rev. 2020;14(5):729. doi:10.1016/j.dsx.2020.03.016
  • BorcherdingN, KolbR, GullicksrudJ, VikasP, ZhuY, ZhangW. Keeping tumors in check: a mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. J Mol Biol. 2018;430(14):2014–2029. doi:10.1016/j.jmb.2018.05.03029800567
  • BersanelliM. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Futur Med. 2020;12(5):269–273.
  • CorteseI, MuranskiP, Enose-AkahataY, et al. Pembrolizumab treatment for progressive multifocal leukoencephalopathy. N Engl J Med. 2019;380(17):1597–1608. doi:10.1056/NEJMoa181503930969503
  • QinS, RottmanJB, MyersP, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 1998;101(4):746–754. doi:10.1172/JCI14229466968
  • HalamaN, ZoernigI, BerthelA, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell. 2016;29(4):587–601.27070705
  • JacobsonJM, ThompsonMA, LalezariJP, et al. Anti–HIV‐1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. J Infect Dis. 2010;201(10):1481–1487. doi:10.1086/65219020377413
  • SavageDG, AntmanKH. Imatinib mesylate—a new oral targeted therapy. N Engl J Med. 2002;346(9):683–693. doi:10.1056/NEJMra01333911870247
  • ColemanCM, SiskJM, MingoRM, NelsonEA, WhiteJM, FriemanMB. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J Virol. 2016;90(19):8924–8933.27466418
  • PopatS, MellemgaardA, FahrbachK, et al. Nintedanib plus docetaxel as second-line therapy in patients with non-small-cell lung cancer: a network meta-analysis. Futur Oncol. 2015;11(3):409–420. doi:10.2217/fon.14.290
  • EichnerR, HeiderM, Fernández-SáizV, et al. Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat Med. 2016;22(7):735. doi:10.1038/nm.412827294876
  • MoreiraAL, SampaioEP, ZmuidzinasA, FrindtP, SmithKA, KaplanG. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993;177(6):1675–1680. doi:10.1084/jem.177.6.16758496685
  • DaviesFE, RajeN, HideshimaT, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood, J Am Soc Hematol. 2001;98(1):210–216.
  • HayashiT, HideshimaT, AkiyamaM, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005;128(2):192–203. doi:10.1111/j.1365-2141.2004.05286.x15638853
  • HaslettPAJ, CorralLG, AlbertM, KaplanG. Thalidomide costimulates primary human t lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–1892. doi:10.1084/jem.187.11.18859607928
  • HaslettPAJ, HanekomWA, MullerG, KaplanG. Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro. J Infect Dis. 2003;187(6):946–955. doi:10.1086/36812612660941
  • ChenC, QiF, ShiK, et al. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19. pneumonia. 2020.
  • TreonSP, CastilloJ, SkarbnikAP, et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020;135(21):1912–1915. doi:10.1182/blood.202000628832302379
  • ByrdJC, HarringtonB, O’BrienS, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–332. doi:10.1056/NEJMoa150998126641137
  • MillerA, ReandelarMJ, FasciglioneK, RoumenovaV, LiY, OtazuGH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv. 2020.
  • AlexandroffAB, JacksonAM, O’DonnellMA, JamesK. BCG immunotherapy of bladder cancer: 20 years on. Lancet. 1999;353(9165):1689–1694. doi:10.1016/S0140-6736(98)07422-410335805
  • ChariA, VoglDT, GavriatopoulouM, et al. Oral selinexor–dexamethasone for triple-class refractory multiple myeloma. N Engl J Med. 2019;381(8):727–738. doi:10.1056/NEJMoa190345531433920
  • MathewC, GhildyalR. CRM1 inhibitors for antiviral therapy. Front Microbiol. 2017;8(8):1171. doi:10.3389/fmicb.2017.0117128702009
  • LeeLYW, CazierJB, StarkeyT, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020;21(10):1309–1316. doi:10.1016/S1470-2045(20)30442-332853557