189
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Caspase Cascade Activation During Apoptotic Cell Death of Human Lung Carcinoma Cells A549 Induced by Marine Sponge Callyspongia aerizusa

ORCID Icon, , , , , & ORCID Icon show all
Pages 1357-1368 | Published online: 29 Mar 2021

References

  • WeinsteinIB, CaseK. The history of cancer research: introducing an AACR centennial series. Cancer Res. 2008;68(17):6861–6862. doi:10.1158/0008-5472.CAN-08-282718757396
  • FerlayJ, SoerjomataramI, DikshitR, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–386. doi:10.1002/ijc.29210
  • StewardBW, WildCP. World Cancer Report 2014. Lyon, France: IARC; 2014:54–67.
  • MansooriB, MohammadiK, DavudianS, ShirjangS, BaradaranB. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–348. doi:10.15171/apb.2017.04129071215
  • MalveH. Exploring the Ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci. 2016;8(2):83–91. doi:10.4103/0975-7406.17170027134458
  • AbdelmohsenUR, BalasubramanianS, OelschlaegerTA, et al. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect Dis. 2017;17(2):30–41. doi:10.1016/S1473-3099(16)30323-127998573
  • HuY, ChenJ, HuG, et al. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs. 2015;13(1):202–221. doi:10.3390/md1301020225574736
  • AiubC, GianneriniA, FerreiraF, et al. Genotoxic evaluation of extracts from Aplysina fulva, A Brazilian marine sponge. Mutat Res. 2006;611(1–2):34–41. doi:10.1016/j.mrgentox.2006.06.03516987694
  • De FloraS, BagnascoM, BennicelliC, CamoiranoA, BojnemirskiA, KurelecB. Biotransformation of genotoxic agents in marine sponges: mechanisms and modulation. Mutagenesis. 1995;10(4):357–364. doi:10.1093/mutage/10.4.3577476273
  • RadyHM, HassanAZ, SalemSM, et al. Induction of apoptosis and cell cycle arrest by Negombata magnifica sponge in hepatocellular carcinoma. Med Chem Res. 2016;25(3):456–465. doi:10.1007/s00044-015-1491-9
  • MiosoR, MaranteFJT, BezerraRS, BorgesFVP, SantosBVO, de LagunaIHB. Cytotoxic compounds derived from marine sponges. a review (2010–2012). Molecules. 2017;22(2):208. doi:10.3390/molecules22020208
  • CostantiniS, RomanoG, RusoloF, et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. 2015;2015:204975. doi:10.1155/2015/20497526491222
  • ChoiC, SonA, LeeHS, LeeYJ, ParkHC. Radiosensitization by marine sponge Agelas sp. extracts in hepatocellular carcinoma cells with autophagy induction. Sci Rep. 2018;8(1):6317. doi:10.1038/s41598-018-24745-w29679028
  • Desqueyroux-FaúndezR. Description de la faune des haplosclerida (Porifera) de la Nouvelle-Calédonie.I. Niphatidae-Callyspongiidae. Rev Suisse Zool. 1984;91:765–827. doi:10.5962/bhl.part.81580
  • IbrahimSRM, MinCC, TeuscherF, et al. Callyaerins A–F and H, new cytotoxic cyclic peptides from the indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem. 2010;18(14):4947–4956. doi:10.1016/j.bmc.2010.06.01220599387
  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. doi:10.3322/caac.2144229313949
  • CuiCM, LiXM, LiM, LiCS, HuangCG, WangBG. 7-nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic aspergillus ochraceus EN-31. J Nat Prod. 2010;73(11):1780–1784. doi:10.1021/np100386q21043476
  • GuBB, WuW, JiaoFR, et al. Asperflotone, an 8(14→15)-abeo-ergostane from the sponge-derived fungus aspergillus flocculosus 16D-1. J Org Chem. 2019;84(1):300–306. doi:10.1021/acs.joc.8b0267930557511
  • ParkHB, TuanNQ, OhJ, et al. Sesterterpenoid and steroid metabolites from a deep-water alaska sponge inhibit Wnt/β-catenin signaling in colon cancer cells. Mar Drugs. 2018;16(9):297. doi:10.3390/md16090297
  • TabakmakherKM, MakarievaTN, DenisenkoVA, et al. New trisulfated steroids from the vietnamese marine sponge halichondria vansoesti and their PSA expression and glucose uptake inhibitory activities. Mar Drugs. 2019;17(8):445. doi:10.3390/md17080445
  • Caamal-FuentesEE, Peraza-SánchezSR, Torres-TapiaLW, Moo-PucRE. Isolation and identification of cytotoxic compounds from Aeschynomene fascicularis, A mayan medicinal plant. Molecules. 2015;20(8):13563–13574. doi:10.3390/molecules20081356326213910
  • DaletosG, KalscheuerR, Koliwer-BrandlH, et al. Callyaerins from the marine sponge Callyspongia aerizusa: cyclic peptides with antitubercular activity. J Nat Prod. 2015;78(8):1910–1925. doi:10.1021/acs.jnatprod.5b0026626213786
  • BaeW, LimHK, KimKM, et al. Apoptosis-inducing activity of marine sponge haliclona sp. extracts collected from kosrae in nonsmall cell lung cancer A549 cells. Evid Based Complement Alternat Med. 2015;2015:1–8. doi:10.1155/2015/717959
  • MoongkarndiP, KosemN, KaslungkaS, LuanratanaO, PongpanN, NeungtonN. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol. 2004;90(1):161–166. doi:10.1016/j.jep.2003.09.04814698525
  • YaoQ, LinM, WangY, et al. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int J Mol Med. 2015;36(4):1118–1126. doi:10.3892/ijmm.2015.232726310655
  • RodinSN, RodinAS. Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol. 2005;15(2):103–112. doi:10.1016/j.semcancer.2004.08.00515652455
  • PoreMM, HiltermannTJN, KruytFAE. Targeting apoptosis pathways in lung cancer. Cancer Lett. 2013;332(2):359–368. doi:10.1016/j.canlet.2010.09.01220974517
  • AshkenaziA. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov. 2008;7(12):1001–1012. doi:10.1038/nrd263718989337
  • WürstleML, LaussmannMA, RehmM. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res. 2012;318(11):1213–1220. doi:10.1016/j.yexcr.2012.02.01322406265
  • DruškovičM, ŠuputD, MilisavI. Overexpression of caspase-9 triggers its activation and apoptosis in vitro. Croat Med J. 2006;47(6):832–840.17167855
  • ThornberryNA, LazebnikY. Caspases: enemies Within. Science. 1998;281(5381):1312–1316. doi:10.1126/science.281.5381.13129721091
  • Fernandes-AlnemriT, LitwackG, AlnemriES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994;269(49):30761–30764. doi:10.1016/S0021-9258(18)47344-97983002
  • KaufmannSH, DesnoyersS, OttavianoY, DavidsonNE, PoirierGG. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53(17):3976–3985.8358726
  • WidlakP. the dff40/cad endonuclease and its role in apoptosis. Acta Biochim Pol. 2000;47(4):1037–1044. doi:10.18388/abp.2000_395711996094
  • BrunelleJK, LetaiA. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 2009;122(4):437–441. doi:10.1242/jcs.03168219193868