145
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Punicalagin Inhibits Tert-Butyl Hydroperoxide-Induced Apoptosis and Extracellular Matrix Degradation in Chondrocytes by Activating Autophagy and Ameliorates Murine Osteoarthritis

, , , & ORCID Icon
Pages 5521-5533 | Published online: 15 Dec 2020

References

  • HunterD, Bierma-ZeinstraS. Osteoarthritis. Lancet. 2019;393(10182):1745–1759. doi:10.1016/S0140-6736(19)30417-931034380
  • KloppenburgM, BerenbaumF. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthr Cartil. 2020;28(3):242–248. doi:10.1016/j.joca.2020.01.002
  • MalyM, MarriottK, Chopp-HurleyJ. Osteoarthritis year in review 2019: rehabilitation and outcomes. Osteoarthr Cartil. 2020;28(3):249–266. doi:10.1016/j.joca.2019.11.008
  • AlcarazMJ, FerrándizML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med. 2019.
  • DrevetS, GavazziG, GrangeL, DupuyC, LardyB. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol. 2018;111:107–117. doi:10.1016/j.exger.2018.07.00730012342
  • LiY, WuY, JiangK, et al. Mangiferin prevents TBHP-induced apoptosis and ECM degradation in mouse osteoarthritic chondrocytes via restoring autophagy and ameliorates murine osteoarthritis. Oxid Med Cell Longev. 2019;2019:17. doi:10.1155/2019/8783197
  • ZhengG, ZhanY, LiX, et al. TFEB, a potential therapeutic target for osteoarthritis via autophagy regulation. Cell Death Dis. 2018;9(9):858. doi:10.1038/s41419-018-0909-y30154423
  • Varela-EirinM, LoureiroJ, FonsecaE, et al. Cartilage regeneration and ageing: targeting cellular plasticity in osteoarthritis. Ageing Res Rev. 2018;42:56–71. doi:10.1016/j.arr.2017.12.00629258883
  • D’AdamoS, CetrulloS, GuidottiS, et al. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med. 2020;153:159–172. doi:10.1016/j.freeradbiomed.2020.03.02932305648
  • FengK, GeY, ChenZ, et al. αCurcumin Inhibits the PERK-eIF2-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxid Med Cell Longev. 2019;2019:8574386. doi:10.1155/2019/857438631223428
  • ParzychKR, KlionskyDJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–473. doi:10.1089/ars.2013.537123725295
  • DuarteJH. Osteoarthritis: autophagy prevents age-related OA. Nat Rev Rheumatol. 2015;11(12):683. doi:10.1038/nrrheum.2015.145
  • TangQ, ZhengG, FengZ, et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 2017;8(10):e3081. doi:10.1038/cddis.2017.45328981117
  • GoutasA, SyrrouC, PapathanasiouI, TsezouA, TrachanaV. The autophagic response to oxidative stress in osteoarthritic chondrocytes is deregulated. Free Radic Biol Med. 2018;126:122–132. doi:10.1016/j.freeradbiomed.2018.08.00330096432
  • SasakiH, TakayamaK, MatsushitaT, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 2012;64(6):1920–1928. doi:10.1002/art.3432322147463
  • BaoJ, ChenZ, XuL, WuL, XiongY. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis. Aging. 2020;12(6):5152–5167. doi:10.18632/aging.10293732182210
  • MengZ, ShenB, GuY, et al. Diazoxide ameliorates severity of experimental osteoarthritis by activating autophagy via modulation of the osteoarthritis-related biomarkers. J Cell Biochem. 2018;119(11):8922–8936. doi:10.1002/jcb.2714529953665
  • PanthN, ManandharB, PaudelK. Anticancer activity of Punica granatum (pomegranate): a review. Phytother Res. 2017;31(4):568–578. doi:10.1002/ptr.578428185340
  • YuanT, MaH, LiuW, et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci. 2016;7(1):26–33. doi:10.1021/acschemneuro.5b0026026559394
  • YanC, SunW, WangX, et al. Punicalagin attenuates palmitate-induced lipotoxicity in HepG2 cells by activating the Keap1-Nrf2 antioxidant defense system. Mol Nutr Food Res. 2016;60(5):1139–1149. doi:10.1002/mnfr.20150049026989875
  • ForoutanfarA, MehriS, KamyarM, TandisehpanahZ, HosseinzadehH. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide-induced neurotoxicity and hepatotoxicity in rats. Phytother Res. 2020. doi:10.1002/ptr.6774
  • ZhangY, CaoY, ChenJ, QinH, YangL, New PossibleA. Mechanism by which punicalagin protects against liver injury induced by type 2 diabetes mellitus: upregulation of autophagy via the Akt/FoxO3a signaling pathway. J Agric Food Chem. 2019;67(50):13948–13959. doi:10.1021/acs.jafc.9b0591031698901
  • CaoY, ChenJ, RenG, ZhangY, TanX, YangL. Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients. 2019;11(11):2794. doi:10.3390/nu11112794
  • YaidikarL, BynaB, ThakurS. Neuroprotective effect of punicalagin against cerebral ischemia reperfusion-induced oxidative brain injury in rats. J Stroke Cerebrovasc Dis. 2014;23(10):2869–2878. doi:10.1016/j.jstrokecerebrovasdis.2014.07.02025282190
  • YuL, DongX, XueX, et al. Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism. Chem Biol Interact. 2019;306:152–162. doi:10.1016/j.cbi.2019.05.00331063767
  • DingM, WangY, SunD, et al. Punicalagin pretreatment attenuates myocardial ischemia-reperfusion injury via activation of AMPK. Am J Chin Med. 2017;45(1):53–66. doi:10.1142/S0192415X1750005728081629
  • LiuX, CaoK, LvW, et al. Punicalagin attenuates endothelial dysfunction by activating FoxO1, a pivotal regulating switch of mitochondrial biogenesis. Free Radic Biol Med. 2019;135:251–260. doi:10.1016/j.freeradbiomed.2019.03.01130878647
  • El-MissiryM, ElKomyM, OthmanA, AbouEl-EzzA. Punicalagin ameliorates the elevation of plasma homocysteine, amyloid-β, TNF-α and apoptosis by advocating antioxidants and modulating apoptotic mediator proteins in brain. Biomed Pharmacother. 2018;102:472–480. doi:10.1016/j.biopha.2018.03.09629579708
  • LeeC, ChenL, WangC. Anti-inflammatory effects of Punica granatum Linne in LPS-induced primary human chondrocytes. Planta Med. 2010;76(12):1376. doi:10.1055/s-0030-1265835
  • LeeCJ, ChenLG, LiangWL, HsiehMS, WangCC. Inhibitory effects of punicalagin from Punica granatum against type II collagenase-induced osteoarthritis. J Funct Food. 2018;41:216–222. doi:10.1016/j.jff.2017.12.026
  • LewisJ, HembreeW, FurmanB, et al. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthr Cartil. 2011;19(7):864–873. doi:10.1016/j.joca.2011.04.011
  • KrausV, HuebnerJ, DeGrootJ, BendeleA. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthr Cartil. 2010;18:S35–52. doi:10.1016/j.joca.2010.04.015
  • BolducJ, CollinsJ, LoeserR. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med. 2019;132:73–82. doi:10.1016/j.freeradbiomed.2018.08.03830176344
  • ZhuZ, LiJ, RuanG, WangG, HuangC, DingC. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opin Investig Drugs. 2018;27(11):881–900. doi:10.1080/13543784.2018.1539075
  • LotzM, CaramésB. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol. 2011;7(10):579–587. doi:10.1038/nrrheum.2011.10921808292