468
Views
26
CrossRef citations to date
0
Altmetric
Perspectives

Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 9-20 | Published online: 06 Jan 2021

References

  • BergJM, TymoczkoJL, StryerL. Proteases: Facilitating a Difficult Reaction. 5th BiochemistryNew York: W H Freeman; 2002.
  • EatemadiA, AiyelabeganHT, NegahdariB, et al. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 2017;86:221–231. doi:10.1016/j.biopha.2016.12.02128006747
  • López-OtínC, BondJS. Proteases: multifunctional Enzymes in Life and Disease. J Biol Chem. 2008;283(45):30433–30437.18650443
  • BrindleyPJ, KalinnaBH, WongJY, et al. Proteolysis of human hemoglobin by schistosome cathepsin D. Mol Biochem Parasitol. 2001;112(1):103–112.11166391
  • Abad-ZapateroC, GoldmanR, MuchmoreSW, et al. Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci. 1996;5(4):640–652.8845753
  • LiZ, ChenX, DavidsonE, et al. Anti-malarial drug development using models of enzyme structure. Chem Biol. 1994;1(1):31–37.9383368
  • WlodawerA, EricksonJW. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585.8352596
  • LoveRA, PargeHE, WickershamJA, et al. The Crystal Structure of Hepatitis C Virus NS3 Proteinase Reveals a Trypsin-like Fold and a Structural Zinc Binding Site. Cell. 1996;87(2):331–342.8861916
  • GibsonW, HallMR. Assemblin, an essential herpesvirus proteinase. Drug Des Discov. 1997;15(1):39–47.9332830
  • BernsteinPR, EdwardsPD, WilliamsJC. Inhibitors of human leukocyte elastase. Prog Med Chem. 1994;31:59–120.8029481
  • FathMA, WuX, HilemanRE, et al. Interaction of Secretory Leukocyte Protease Inhibitor with Heparin Inhibits Proteases Involved in Asthma. J Biol Chem. 1998;273(22):13563–13569. doi:10.1074/jbc.273.22.135639593692
  • StubbsMT, BodeW. A player of many parts: the spotlight falls on thrombin’s structure. Thromb Res. 1993;69(1):1–58. doi:10.1016/0049-3848(93)90002-68465268
  • VassarR, et al. Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science. 1999;286(5440):735–741. doi:10.1126/science.286.5440.73510531052
  • YanS, SameniM, SloaneBF. Cathepsin B and human tumor progression.. Biol Chem. 1998;379(2):113–123.9524062
  • SevenichL, JoyceJA. Pericellular proteolysis in cancer. Genes Dev. 2014;28(21):2331–2347. doi:10.1101/gad.250647.11425367033
  • PetushkovaAI, SavvateevaLV, KorolevDO, ZamyatninAA. Cysteine Cathepsins: potential Applications in Diagnostics and Therapy of Malignant Tumors. Biochemistry (Mosc). 2019;84(7):746–761. doi:10.1134/S000629791907006X31509726
  • SoondSM, KozhevnikovaMV, ZamyatninJAA. ‘Patchiness’ and basic cancer research: unravelling the proteases. Cell Cycle. 2019;18(15):1687–1701. doi:10.1080/15384101.2019.163263931213124
  • RudzińskaM, ParodiA, SoondSM, et al. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. Int J Mol Sci. 2019;20(14):3602. doi:10.3390/ijms20143602
  • ZhivotovskyB, GahmA, OrreniusS. Two different proteases are involved in the proteolysis of lamin during apoptosis. Biochem Biophys Res Commun. 1997;233(1):96–101. doi:10.1006/bbrc.1997.64119144403
  • GlynnSE. Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci. 2017;4:34.28589125
  • GuicciardiME, DeussingJ, MiyoshiH, et al. Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000;106(9):1127–1137.11067865
  • ZdolsekJ, ZhangH, RobergK. Brunk U. H2O2-mediated damage to lysosomal membranes of J-774 cells. Free Radic Res Commun. 1993;18(2):71–85.8386686
  • PetushkovaAI, ZamyatninAAJ. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning. Biomolecules. 2020;10(4):650.
  • BesingiRN, ClarkPL. Extracellular Protease Digestion to Evaluate Membrane Protein Cell Surface Localization. Nat Protoc. 2015;10(12):2074–2080.26584447
  • RudzińskaM, ParodiA, MaslovaVD, et al. Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers. 2020;12(5):1310.
  • FaradyCJ, CraikCS. Mechanisms Of Macromolecular Protease Inhibitors. Chembiochem. 2010;11(17):2341–2346.21053238
  • RawlingsND, TolleDP, BarrettAJ. Evolutionary families of peptidase inhibitors. Biochem J. 2004;378(Pt 3):705–716.14705960
  • BrewK, NagaseH. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.20080133
  • LawRH, ZhangQ, McGowanS, et al. An overview of the serpin superfamily. Genome Biol. 2006;7(5):216.16737556
  • TheK-JN. Role of Cysteine Proteinases and their Inhibitors in the Host-Pathogen Cross Talk. Curr Protein Pept Sci. 2012;13(8):767–775.23305363
  • LaronhaH, CarpinteiroI, PortugalJ, et al. Challenges in Matrix Metalloproteinases Inhibition. Biomolecules. 2020;10(5):717.
  • LiuJ, KhalilRA. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Prog Mol Biol Transl Sci. 2017;148:355–420.28662828
  • TurkB. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006;5(9):785–799.16955069
  • WinerA, AdamsS, MignattiP. Matrix Metalloproteinase Inhibitors in Cancer Therapy: turning Past Failures Into Future Successes. Mol Cancer Ther. 2018;17(6):1147–1155.29735645
  • VandenbrouckeRE, LibertC. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2020;13(12):904–927.
  • FieldsGB. The Rebirth of Matrix Metalloproteinase Inhibitors: moving Beyond the Dogma. Cells. 2019;8(9):984.
  • MarshallDC, LymanSK, McCauleyS, et al. Selective Allosteric Inhibition of MMP9 Is Efficacious in Preclinical Models of Ulcerative Colitis and Colorectal Cancer. PLoS One. 2015;10(5):e0127063.25961845
  • FischerT, RiedlR. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules. 2019;24(12):2265.
  • TauroM, McGuireJ, LynchCC. New approaches to selectively target cancer-associated matrix metalloproteinase activity. Cancer Metastasis Rev. 2014;33(4):1043–1057.25325988
  • OverallCM. Dilating the degradome: matrix metalloproteinase 2 (MMP-2) cuts to the heart of the matter. Biochem J. 2004;383(Pt. 3):e5–e7.15508185
  • ParksWC, WilsonCL, López-BoadoYS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4(8):617–629.15286728
  • OverallCM, KleifeldO. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6(3):227–239.16498445
  • EgebladM, WerbZ. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–174.11990853
  • PancheAN, DiwanAD, ChandraSR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.28620474
  • ShinSA, MoonSY, KimWY. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int J Mol Sci. 2018;19(9):2651.
  • FearG, KomarnytskyS, RaskinI. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther. 2017;113(2):354–368.
  • SchmittM, HarbeckN, BrünnerN, et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 2011;11(6):617–634.21745015
  • XuP, AndreasenPA, HuangM. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci. 2017;13(10):1222–1233.29104489
  • DuffyFJ, DevocelleM, ShieldsDC. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions. Methods Mol Biol. 2015;1268:241–271.25555728
  • CraikDJ, FairlieDP, LirasS, PriceD. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–147.23253135
  • SchweinitzA, SteinmetzerT, BankeIJ, et al. Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. J Biol Chem. 2004;279(32):33613–33622.15150279
  • HennekeI, GreschusS, SavaiR, et al. Inhibition of urokinase activity reduces primary tumor growth and metastasis formation in a murine lung carcinoma model. Am J Respir Crit Care Med. 2010;181(6):611–619.20056905
  • VermaS, DixitR, PandeyKC. Cysteine Proteases: modes of Activation and Future Prospects as Pharmacological Targets. Front Pharmacol. 2016;25(7):107.
  • HanadaK, TamaiM, YamagishiM, OhmuraS, SawadaJ, IsolationTI. Characterization of E–64, a New Thiol Protease Inhibitor. Agric Biol Chem. 2014;9:0002–1369.
  • SiklosM, BenAissaM, ThatcherGRJ. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6):506–519.26713267
  • SinghJ, PetterRC, BaillieTA, WhittyA. The resurgence of covalent drugs. Nat Rev Drug Discov. 2020;10(4):307–317.
  • LeungD, AbbenanteG, FairlieDP. Protease inhibitors: current status and future prospects. J Med Chem. 2000;43(3):305–341.10669559
  • JohnsonDS, WeerapanaE, CravattBF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010;2(6):949–964.20640225
  • DanaD, PathakSKA. Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules. 2020;25(3):698.
  • MurataM, MiyashitaS, YokooC, et al. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991;280:2.
  • KatunumaN, MurataE, KakegawaH, et al. Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett. 1999;458(1):6–10.10518923
  • KatunumaN. Structure-based development of specific inhibitors for individual cathepsins and their medical applications. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(2):29–39.
  • DuongLT, WesolowskiGA, LeungP, et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther. 2014;13(12):2898–2909.25249554
  • BurdenRE, GormleyJA, JaquinTJ, et al. Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis. Clin Cancer Res. 2009;15(19):6042–6051.19789302
  • WardC, KuehnD, BurdenRE, et al. Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One. 2010;5(9):e12543.20824056
  • O’HalloranTV, AhnR, HankinsP, SwindellE, MazarAP. The Many Spaces of uPAR: delivery of Theranostic Agents and Nanobins to Multiple Tumor Compartments through a Single Target. Theranostics. 2013;3(7):496–506.23843897
  • HideshimaT, BradnerJE, WongJ, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Nat Acad Sci U S A. 2005;102(24):8567–8572.
  • MitsiadesN, MitsiadesCS, RichardsonPG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101(6):2377–2380.12424198
  • MabongaL, KappoAP. Peptidomimetics: A Synthetic Tool for Inhibiting Protein–Protein Interactions in Cancer. Int J Pept Res Ther. 2019;26(1):225–241.
  • MasonSD, JoyceJA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21(4):228–237.21232958
  • VerhammeIM, LeonardSE, PerkinsRC. Proteases: pivot Points in Functional Proteomics. Methods Mol Biol. 2019;1871:313–392.30276748
  • KappelhoffR, PuenteXS, WilsonCH, SethA, López-OtínC, OverallCM. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt B):2210–2219.28797648
  • VerbovsekU, MotalnH, RotterA, et al. Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma. PLoS One. 2014;9(10):e111819.25356585
  • López-OtínC, HunterT. The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 2010;10(4):278–292.20300104
  • KimEE, BakerCT, DwyerMD, et al. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J Am Chem Soc. 1995;117(3):1181–1182.
  • MuellerBU, AndersonBD, FarleyMQ, et al. Pharmacokinetics of the protease inhibitor KNI-272 in plasma and cerebrospinal fluid in nonhuman primates after intravenous dosing and in human immunodeficiency virus-infected children after intravenous and oral dosing. Antimicrob Agents Chemother. 1998;42(7):1815–1818.9661027
  • BarryM, GibbonsS, BackD, MulcahyF. Protease inhibitors in patients with HIV disease. Clin Important Pharm Considerations Clin Pharm. 1997;32(3):194–209.
  • WilliamsGC, SinkoPJ. Oral absorption of the HIV protease inhibitors: a current update. Adv Drug Deliv Rev. 1999;39(1–3):211–238.10837775
  • YehKC, DeutschPJ, HaddixH, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents and Chemother. 1998;42:2.
  • FitzsimmonsME, CollinsJM. Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: potential contribution to high first-pass metabolism. Drug Metab Dispos. 1997;25(2):256–266.9029057
  • TathamLM, RannardSP, OwenA. Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv. 2015;6(4):469–490.25996045
  • KigenG, EdwardsG. Enhancement of saquinavir absorption and accumulation through the formation of solid drug nanoparticles. BMC Pharmacol Toxicol. 2018;19(1):79.30509316
  • ImperialeJC, NejamkinP, Del SoleMJ, LanusseCE, SosnikA. Novel protease inhibitor-loaded Nanoparticle-in-Microparticle Delivery System leads to a dramatic improvement of the oral pharmacokinetics in dogs. Biomaterials. 2015;37:383–394.25453966
  • VarshosazJ, FardMM, MirianM, HassanzadehF. Targeted Nanoparticles for Co-delivery of 5-FU and Nitroxoline, a Cathepsin B Inhibitor, in HepG2 Cells of Hepatocellular Carcinoma. Anticancer Agents Med Chem. 2020;20(3):346–358.31566137
  • DheerD, NicolasJ, ShankarR. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev. 2019;151–152:130–151.
  • RizviSAA, SalehAM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.29379334
  • PatraJK, DasG, FracetoLF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.30231877
  • ParodiA, MiaoJ, SoondSM, et al. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules. 2019;9(6):218.
  • MaysingerD, GranER, BertorelleF, et al. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics. 2020;10(4):1633–1648.32042327
  • ParodiA, RudzińskaM, DeviatkinAA, et al. Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics. 2019;11(5):245.
  • ZouY, ZhangL, YangL, et al. “Click” chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J Control Release. 2018;273:160–179.29382547
  • ChenLY, WangCW, YuanZ, et al. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–229.25275676
  • ShenD, HenryM, TrouilletV, et al. Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging. APL Materials. 2017;5(5):053404.
  • ZhangC, LiC, LiuY, et al. Gold Nanoclusters-Based Nanoprobes for Simultaneous Fluorescence Imaging and Targeted Photodynamic Therapy with Superior Penetration and Retention Behavior in Tumors. Adv Funct Mater. 2015;25(8):1314–1325.
  • YangP, ZhangS, ChenX, LiuX, WangZ, LiY. Recent developments in polydopamine fluorescent nanomaterials. Mater Horiz. 2020;7:746–761.
  • WangY, WangY, ZhouF, KimP, Protein-ProtectedXY. Au Clusters as a New Class of Nanoscale Biosensor for Label-Free Fluorescence Detection of Proteases. Small. 2012;8(24):3769–3773.22969016
  • ColombéC, Le GuévelX, Martin-SerranoA, et al. Gold nanoclusters as a contrast agent for image-guided surgery of head and neck tumors. Nanomedicine. 2019;20:102011.31103735
  • ZhangX-D, LuoZ, ChenJ, et al. Ultrasmall Au10− 12(SG)10−12Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Adv Mater. 2014;26(26):4565–4568.24817169
  • ZhouF, FengB, YuH, et al. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics. 2016;6(5):679–687.27022415
  • ZhanZ, HuangY, LinG, HuangS, ZengF, WuS. C, Huang Y, Lin G, Huang S, Zeng F, Wu S. A Gold Nanocage/Cluster Hybrid Structure for Whole-Body Multispectral Optoacoustic Tomography Imaging, EGFR Inhibitor Delivery, and Photothermal Therapy. Small. 2019;15(33):1900309. doi:10.1002/smll.201900309
  • DagliogluC, KaciFN. Cascade therapy with doxorubicin and survivin-targeted tailored nanoparticles: an effective alternative for sensitization of cancer cells to chemotherapy. Int J Pharm. 2019;561:74–81. doi:10.1016/j.ijpharm.2019.02.03630825555
  • DagliogluC, SynthesisOB. Characterization of AICAR and DOX Conjugated Multifunctional Nanoparticles as a Platform for Synergistic Inhibition of Cancer Cell Growth. Bioconjug Chem. 2016;27(4):1098–1111. doi:10.1021/acs.bioconjchem.6b0008026996194
  • ShenS, Xiao-JiaoD, LiuJ. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release. 2015;208:14–24. doi:10.1016/j.jconrel.2014.12.04325575864
  • ParkJE, ParkJ, JunY, et al. Expanding Therapeutic Utility of Carfilzomib for Breast Cancer Therapy by Novel Albumin-coated Nanocrystal Formulation. J Control Release. 2019;302:148–159. doi:10.1016/j.jconrel.2019.04.00630954620
  • LyuY, XiaoQ, YinL, YangL, HeW. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduct Target Ther. 2019;4(1):26. doi:10.1038/s41392-019-0054-931637006
  • LombardoD, KiselevMA, CaccamoMT. Smart Nanoparticles for Drug Delivery Application: development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J Nanomater. 2009;2(9):1–26.
  • HatakeyamaH, AkitaH, IshidaE, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1–2):194–200. doi:10.1016/j.ijpharm.2007.04.03717583453
  • NunesSS, FernandesRS, CavalcanteCH, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv Transl Res. 2019;9(1):123–130. doi:10.1007/s13346-018-0583-830187353
  • ZhuL, KateP, TorchilinVP, MetalloproteaseM. 2-Responsive Multifunctional Liposomal Nanocarrier for Enhanced Tumor Targeting. ACS Nano. 2012;6(4):3491–3498. doi:10.1021/nn300524f22409425
  • GuG, XiaH, HuQ, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 2013;34(1):196–208. doi:10.1016/j.biomaterials.2012.09.04423069707
  • AhnRW, ChenF, ChenH, et al. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res. 2010;16(14):3607–3617. doi:10.1158/1078-0432.CCR-10-006820519360
  • UsluR, SanliUA, SezginC, et al. Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines.. Clin Cancer Res. 2000;6(12):4957–4964.11156257
  • ZhangY, KennyHA, SwindellEP, et al. Urokinase Plasminogen Activator System-Targeted Delivery of Nanobins as a Novel Ovarian Cancer Therapy. Mol Cancer Ther. 2013;12(12):2628–2639. doi:10.1158/1535-7163.MCT-13-020424061648
  • Ming WangM, LöwikDWPM, MillerAD, ThanouM. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem. 2009;20(1):32–40. doi:10.1021/bc800190819099499
  • GalbiatiE, CassaniM, VerderioP, et al. Peptide-Nanoparticle Ligation Mediated by Cutinase Fusion for the Development of Cancer Cell-Targeted Nanoconjugates. Bioconjug Chem. 2015;26(4):680–689. doi:10.1021/acs.bioconjchem.5b0000525741889
  • HuangX, PengX, WangY, WangY, ShinDM. A Reexamination of Active and Passive Tumor Targeting by Using Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands. ACS Nano. 2010;4(10):5887–5896. doi:10.1021/nn102055s20863096
  • SunX-H, TanL, LiC-Y, et al. A novel gene delivery system targeting urokinase receptor. Acta Biochim Biophys Sin (Shanghai). 2004;36(7):485–491. doi:10.1093/abbs/36.7.48515248023
  • YangL, CaoZ, SajjaHK, et al. Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging. J Biomed Nanotechnol. 2008;4(4):439–449. doi:10.1166/jbn.2008.00725152701
  • AbdallaMO, KarnaP, SajjaHK, et al. Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release. 2011;149(3):314–322. doi:10.1016/j.jconrel.2010.10.03021047537
  • LeeGY, QianWP, WangL, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–2089. doi:10.1021/nn304346323402593
  • ZhangB, ZhangY, LiaoZ, et al. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials. 2015;36:98–109. doi:10.1016/j.biomaterials.2014.09.00825443789
  • CopoloviciDM, LangelK, EristeE, LangelÜ. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994. doi:10.1021/nn405726924559246
  • CegnarM, KosJ, KristlJ. Intracellular delivery of cysteine protease inhibitor cystatin by polymeric nanoparticles. J Nanosci Nanotechnol. 2006;6(9):3087–3094. doi:10.1166/jnn.2006.40117048522
  • ObermajerN, KocbekP, RepnikU, et al. Immunonanoparticles − an effective tool to impair harmful proteolysis in invasive breast tumor cells. FEBS Journal. 2007;274(17):4416–4427. doi:10.1111/j.1742-4658.2007.05971.x
  • MikhaylovG, MikacU, MagaevaAA, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011;6(9):594–602. doi:10.1038/nnano.2011.11221822252
  • MikhaylovG, KlimpelD, SchaschkeN, et al. Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angew Chem Int Ed Engl. 2014;53(38):10077–10081. doi:10.1002/anie.20140230524975267
  • DeJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149. doi:10.2147/IJN.S59618686775
  • ShenS, WuY, LiuY, WuD. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–4109. doi:10.2147/IJN.S13278028615938
  • GusićN, IvkovićA, VaFayeJ, et al. Nanobiotechnology and bone regeneration: a mini-review. Int Orthop. 2014;38(9):1877–1884. doi:10.1007/s00264-014-2412-024962293
  • MokhtarzadehA, AlibakhshiA, YaghoobiH, HashemiM, HejaziM, RamezaniM. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin Biol Ther. 2016;16(6):771–785. doi:10.1517/14712598.2016.116926926998622
  • TsaiH, ImaeT. Fabrication of dendrimers toward biological application. Prog Mol Biol Transl Sci. 2011;104:101–140.22093218
  • KarimiM, GhasemiA, ZangabadPS, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501.26776487
  • JahangirianH, LemraskiEG, WebsterTJ, Rafiee-MoghaddamR, AbdollahiY. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957–2978. doi:10.2147/IJN.S12768328442906
  • ClementeM, CoriglianoMG, ParianiSA, Sánchez-LópezEF, SanderVA, Ramos-DuarteVA. Plant Serine Protease Inhibitors: biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci. 2019;20(6):1345. doi:10.3390/ijms20061345
  • HossenS, HossainMK, BasherMK, MiaMNH, RahmanMT, UddinMJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res. 2019;15:1–18. doi:10.1016/j.jare.2018.06.00530581608
  • MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578. doi:10.1016/j.msec.2015.11.06726706565