429
Views
31
CrossRef citations to date
0
Altmetric
Review

Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-275 | Published online: 22 Jan 2021

References

  • KatsimbriP. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6):e12740. doi:10.1111/ecc.12740
  • XiaoW, WangY, PaciosS, et al. Cellular and molecular aspects of bone remodeling In: KantarciA, editor. Tooth Movement. Vol. 18 Basel: Karger; 2015:9–16.
  • AndersenTL, SondergaardTE, SkorzynskaKE, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174(1):239–247. doi:10.2353/ajpath.2009.08062719095960
  • BonewaldLF, JohnsonML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–615. doi:10.1016/j.bone.2007.12.22418280232
  • JiaoH, XiaoE, GravesDT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13(5):327–335. doi:10.1007/s11914-015-0286-826254939
  • LeanJM, JaggerCJ, KirsteinB, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology. 2005;146(2):728–735. doi:10.1210/en.2004-102115528306
  • HuhYJ, KimJM, KimH, et al. Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors. Cell Death Differ. 2006;13(7):1138–1146. doi:10.1038/sj.cdd.440179316224490
  • FontaniF, MarcucciG, IantomasiT, et al. Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling. Calcif Tissue Int. 2015;96(4):335–346. doi:10.1007/s00223-015-9961-025660312
  • BonewaldLF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–238. doi:10.1002/jbmr.32021254230
  • JilkaRL, NobleB, WeinsteinRS. Osteocyte apoptosis. Bone. 2013;54(2):264–271. doi:10.1016/j.bone.2012.11.03823238124
  • MaratheN, RangaswamiH, ZhuangS, et al. Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/CGMP via differential actions of CGMP-dependent protein kinases I and II. J Biol Chem. 2012;287(2):978–988. doi:10.1074/jbc.M111.29495922117068
  • SoaresDG, AndreazzaAC, SalvadorM. Avaliação de compostos com atividade antioxidante em células da levedura saccharomyces cerevisiae. Rev Bras Cienc Farm. 2005;41:95–100. doi:10.1590/S1516-93322005000100011
  • RomagnoliC, MarcucciG, FavilliF, et al. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like Saos-2 cells. FEBS J. 2013;280(3):867–879.23176170
  • BanfiG, IorioEL, CorsiMM. Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med. 2008;46(11):1550–1555. doi:10.1515/CCLM.2008.30218847368
  • JunJH, LeeS-H, KwakHB, et al. N-acetylcysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem. 2008;103(4):1246–1255. doi:10.1002/jcb.2150817979115
  • SendurOF, TuranY, TastabanE, et al. Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine. 2009;76(5):514–518. doi:10.1016/j.jbspin.2009.02.00519464221
  • AlmeidaM, HanL, Martin-MillanM, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–27297. doi:10.1074/jbc.M70281020017623659
  • MaggioD, BarabaniM, PierandreiM, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88(4):1523–1527. doi:10.1210/jc.2002-02149612679433
  • LeanJM, DaviesJT, FullerK, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest. 2003;112(6):915–923. doi:10.1172/JCI20031885912975476
  • PolatB, HaliciZ, CadirciE, et al. The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol. 2013;718(1–3):469–474. doi:10.1016/j.ejphar.2013.07.03323911880
  • MohamadS, ShuidAN, MohamedN, et al. The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics (Sao Paulo). 2012;67:1077–1085. doi:10.6061/clinics/2012(09)1623018307
  • HallSL, GreendaleGA. The relation of dietary vitamin C intake to bone mineral density: results from the pepi study. Calcif Tissue Int. 1998;63(3):183–189. doi:10.1007/s0022399005129701620
  • SandersKM, KotowiczMA, NicholsonGC. Potential role of the antioxidant N-acetylcysteine in slowing bone resorption in early post-menopausal women: a pilot study. Transl Res. 2007;150:215. doi:10.1016/j.trsl.2007.03.01217900508
  • MortonDJ, Barrett-ConnorEL, SchneiderDL. Vitamin c supplement use and bone mineral density in postmenopausal women. J Bone Miner Res. 2001;16(1):135–140. doi:10.1359/jbmr.2001.16.1.13511149477
  • MaininiG, RotondiM, Di NolaK, et al. Oral supplementation with antioxidant agents containing alpha lipoic acid: effects on postmenopausal bone mass. Clin Exp Obstet Gynecol. 2012;39(4):489–493.23444750
  • CliffordMN. Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric. 2000;80(7):1033–1043. doi:10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T
  • EspindolaKMM, FerreiraRG, NarvaezLEM, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019;9:541. doi:10.3389/fonc.2019.0054131293975
  • MagnaniC, IsaacVLB, CorreaMA, et al. Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods. 2014;6(10):3203–3210. doi:10.1039/C3AY41807C
  • ArmutcuF, AkyolS, UstunsoyS, et al. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (review). Exp Ther Med. 2015;9(5):1582–1588. doi:10.3892/etm.2015.234626136862
  • NardiniM, D’AquinoM, TomassiG, et al. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic Biol Med. 1995;19(5):541–552. doi:10.1016/0891-5849(95)00052-Y8529913
  • LaranjinhaJ, VieriraO, AlmeidaL, et al. Inhibition of metmyoglobin/H2O2-dependent low density lipoprotein lipid peroxidation by naturally occurring phenolic acids. Biochem Pharmacol. 1996;51(4):395–402. doi:10.1016/0006-2952(95)02171-X8619883
  • MeyerAS, DonovanJL, PearsonDA, et al. Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. J Agric Food Chem. 1998;46(5):1783–1787.
  • FukumotoLR, MazzaG. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48(8):3597–3604. doi:10.1021/jf000220w10956156
  • MoherD, LiberatiA, TetzlaffJ, et al. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.100009719621072
  • HaJ, ChoiH-S, LeeY, et al. Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos. Int Immunopharmacol. 2009;9(6):774–780. doi:10.1016/j.intimp.2009.03.00119285574
  • AngES, PavlosNJ, ChaiLY, et al. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol. 2009;221(3):642–649. doi:10.1002/jcp.2189819681045
  • KwonYB, WangFF, JangHD. Anti-osteoclastic effect of caffeic acid phenethyl ester in murine macrophages depends upon the suppression of superoxide anion production through the prevention of an active-nox1 complex formation. J Nutr Biochem. 2018;58:158–168. doi:10.1016/j.jnutbio.2018.03.02329957360
  • WuX, LiZ, YangZ, et al. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. J Bone Miner Res. 2012;27(6):1298–1308. doi:10.1002/jbmr.157622337253
  • SandraF, KetherinK. Caffeic acid inhibits RANKL and TNF-α-induced phosphorylation of p38 mitogen-activated protein kinase in RAW-D cells. Indones Biomed J. 2018;10(2):140–143. doi:10.18585/inabj.v10i2.437
  • Melguizo-RodríguezL, Manzano-MorenoFJ, Illescas-MontesR, et al. Bone protective effect of extra-virgin olive oil phenolic compounds by modulating osteoblast gene expression. Nutrients. 2019;11(8):1722. doi:10.3390/nu11081722
  • SandraF, KukitaT, TangQY, et al. Cafeic acid inhibits NFκB activation of osteoclastogenesis signaling pathway. Indones Biomed J. 2011;3(3):216–222. doi:10.18585/inabj.v3i3.153
  • KızıldağA, ArabacıT, AlbayrakM, et al. A biochemical and immunohistochemical study of the effects of caffeic acid phenethyl ester on alveolar bone loss and oxidative stress in diabetic rats with experimental periodontitis. Biotech Histochem. 2020;95(6):456–463. doi:10.1080/10520295.2020.171875632013634
  • KızıldağA, ArabacıT, AlbayrakM, et al. Therapeutic effects of caffeic acid phenethyl ester on alveolar bone loss in rats with endotoxin-induced periodontitis. J Dent Sci. 2019;14(4):339–345. doi:10.1016/j.jds.2019.03.01131890119
  • KızıldağA, ArabacıT, AlbayrakM, et al. Evaluation of caffeic acid phenethyl ester administration in chronically stressed rats with experimental periodontitis. Cumhur Dent J. 2019;22(1):114–120.
  • YiğitU, KırzıoğluFY, UğuzAC, et al. Is caffeic acid phenethyl ester more protective than doxycycline in experimental periodontitis? Arch Oral Biol. 2017;81:61–68. doi:10.1016/j.archoralbio.2017.04.01728482239
  • KazanciogluHO, BereketMC, EzirganliS, et al. Effects of caffeic acid phenethyl ester on wound healing in calvarial defects. Acta Odontol Scand. 2015;73(1):21–27. doi:10.3109/00016357.2014.94287625373514
  • KazanciogluHO, AksakalliS, EzirganliS, et al. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture. Drug Des Devel Ther. 2015;9:6483–6488. doi:10.2147/DDDT.S97797
  • FolwarcznaJ, PytlikM, ZychM, et al. Effects of caffeic and chlorogenic acids on the rat skeletal system. Eur Rev Med Pharmacol Sci. 2015;19(4):682–693.25753887
  • ZychM, FolwarcznaJ, PytlikM, et al. Administration of caffeic acid worsened bone mechanical properties in female rats. Planta Med. 2010;76(5):407–411. doi:10.1055/s-0029-124060319937547
  • YildizM, CicekE, CerciSS, et al. Influence of electromagnetic fields and protective effect of cape on bone mineral density in rats. Arch Med Res. 2006;37(7):818–821. doi:10.1016/j.arcmed.2006.03.00616971219
  • WilliamsB, TsangariE, StansboroughR, et al. Mixed effects of caffeic acid phenethyl ester (CAPE) on joint inflammation, bone loss and gastrointestinal inflammation in a murine model of collagen antibody-induced arthritis. Inflammopharmacology. 2017;25(1):55–68. doi:10.1007/s10787-016-0306-z28044215
  • FolwarcznaJ, ZychM, BurczykJ, et al. Effects of natural phenolic acids on the skeletal system of ovariectomized rats. Planta Med. 2009;75(15):1567–1572. doi:10.1055/s-0029-118590419598079
  • ErdemM, GulabiD, SenC, et al. Effects of caffeic acid phenethyl ester and melatonin on distraction osteogenesis: an experimental study. SpringerPlus. 2014;3:8. doi:10.1186/2193-1801-3-825674422
  • CicekE, GokalpO, VarolR, et al. Influence of electromagnetic fields on bone fracture in rats: role of cape. Biomed Environ Sci. 2009;22(2):157–160. doi:10.1016/S0895-3988(09)60039-819618694
  • DuanW, WangQ, LiF, et al. Anti-catabolic effect of caffeic acid phenethyl ester, an active component of honeybee propolis on bone loss in ovariectomized mice: a micro-computed tomography study and histological analysis. Chin Med J (Engl). 2014;127(22):3932–3936.25421193
  • TolbaMF, El-SerafiAT, OmarHA. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: impact on oxidative stress and RANKL/OPG signals. Toxicol Appl Pharmacol. 2017;324:26–35. doi:10.1016/j.taap.2017.03.02128363435
  • UçanMC, KoparalM, AğaçayakS, et al. Influence of caffeic acid phenethyl ester on bone healing in a rat model. J Int Med Res. 2013;41(5):1648–1654. doi:10.1177/030006051349061324065455
  • ZawawiMS, PerilliE, StansboroughRL, et al. Caffeic acid phenethyl ester abrogates bone resorption in a murine calvarial model of polyethylene particle-induced osteolysis. Calcif Tissue Int. 2015;96(6):565–574. doi:10.1007/s00223-015-9982-825804981
  • RenwickA. First-pass metabolism within the lumen of the gastrointestinal tract. Presystem Drug Eliminat. 2013;1:1.
  • Al ShoyaibA, ArchieSR, KaramyanVT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12. doi:10.1007/s11095-019-2745-x31873819
  • FakhryM, HamadeE, BadranB, et al. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5(4):136–148. doi:10.4252/wjsc.v5.i4.13624179602
  • BeekmanKM, ZwaagstraM, Veldhuis-VlugAG, et al. Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HEJ mice. Am J Physiol Endocrinol Metab. 2019;317(6):E1050–E1054. doi:10.1152/ajpendo.00142.201931526291
  • MazièreC, SalleV, GomilaC, et al. Oxidized low density lipoprotein enhanced RANKL expression in human osteoblast-like cells. Involvement of ERK, NFkappaB and NFAT. Biochim Biophys Acta Mol Basis Dis. 2013;1832(10):1756–1764. doi:10.1016/j.bbadis.2013.05.033
  • FengW, GuoJ, LiM. RANKL-independent modulation of osteoclastogenesis. J Oral Biosci. 2019;61(1):16–21. doi:10.1016/j.job.2019.01.00130929797
  • HumphreyEL, WilliamsJHH, DavieMWJ, et al. Effects of dissociated glucocorticoids on OPG and RANKL in osteoblastic cells. Bone. 2006;38(5):652–661. doi:10.1016/j.bone.2005.10.00416298558
  • Negishi-KogaT, TakayanagiH. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 2009;231(1):241–256. doi:10.1111/j.1600-065X.2009.00821.x19754901
  • CongQ, JiaH, LiP, et al. P38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7(1):45964. doi:10.1038/srep4596428382965
  • KangJ-H, LimH, JeongJ-E, et al. Attenuation of RANKL-induced osteoclast formation via p38-mediated NFATc1 signaling pathways by extract of euphorbia lathyris l. J Bone Metab. 2016;23(4):207–214. doi:10.11005/jbm.2016.23.4.20727965942
  • ThouvereyC, CaverzasioJ. Focus on the p38 MAPK signaling pathway in bone development and maintenance. Bonekey Rep. 2015;4:711. doi:10.1038/bonekey.2015.8026131361
  • BoyceBF, XiuY, LiJ, et al. NF-κB-mediated regulation of osteoclastogenesis. Endocrinol Metab (Seoul). 2015;30(1):35–44. doi:10.3803/EnM.2015.30.1.3525827455
  • LeeNK, ChoiYG, BaikJY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106(3):852–859. doi:10.1182/blood-2004-09-366215817678
  • ThannickalVJ, FanburgBL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–1028. doi:10.1152/ajplung.2000.279.6.L100511076791
  • BedardK, KrauseK-H. The Nox family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.17237347
  • SedeekM, NasrallahR, TouyzRM, et al. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. Clin J Am Soc Nephrol. 2013;24(10):1512LP–1518. doi:10.1681/ASN.2012111112
  • HursonCJ, ButlerJS, KeatingDT, et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord. 2007;8:12. doi:10.1186/1471-2474-8-1217295923
  • KimJH, KimN. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014;21(4):233–241. doi:10.11005/jbm.2014.21.4.23325489571
  • HollandL, MulaRVR, MachiahD, et al. Fluorinated caffeic acid phenethyl ester: a novel anti-osteogenic molecule to attenuate excessive bone damage during autoimmune arthritis. FASEB J. 2016;30:lb451.
  • LiangH, XuJ, XueM, et al. Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. Metalloproteinases Med. 2016;3:93–102. doi:10.2147/MNM.S92187
  • ParkWH, KimSH, KimCH. A new matrix metalloproteinase-9 inhibitor 3,4-dihydroxycinnamic acid (caffeic acid) from methanol extract of Euonymus alatus: isolation and structure determination. Toxicology. 2005;207(3):383–390. doi:10.1016/j.tox.2004.10.00815664266
  • JinUH, ChungTW, KangSK, et al. Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: isolation and identification. Clin Chim Acta. 2005;362(1–2):57–64. doi:10.1016/j.cccn.2005.05.00916004979
  • KarlssonMK, JosefssonPO, NordkvistA, et al. Bone loss following tibial osteotomy: a model for evaluating post-traumatic osteopenia. Osteoporos Int. 2000;11(3):261–264. doi:10.1007/s00198005029010824243
  • KuntH, SenturkI, GonulY, et al. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers. Onco Targets Ther. 2016;9:745–754. doi:10.2147/OTT.S9437426929645
  • OrishimoKF, ClausAM, SychterzCJ, et al. Relationship between polyethylene wear and osteolysis in hips with a second-generation porous-coated cementless cup after seven years of follow-up. J Bone Joint Surg Am. 2003;85(6):1095–1099. doi:10.2106/00004623-200306000-0001812784009
  • ShiuJ, HoM-H, YuS-H, et al. Preparation and characterization of caffeic acid grafted chitosan/CPTMS hybrid scaffolds. Carbohydr Polym. 2010;79(3):724–730. doi:10.1016/j.carbpol.2009.09.025
  • ZychM, FolwarcznaJ, TrzeciakHI. Natural phenolic acids may increase serum estradiol level in ovariectomized rats. Acta Biochimica Polonica. 2009;56(3):503–507. doi:10.18388/abp.2009_248619753332
  • LaiYL, YamaguchiM. Phytocomponent p-hydroxycinnamic acid stimulates bone formation and inhibits bone resorption in rat femoral tissues in vitro. Mol Cell Biochem. 2006;292(1–2):45–52. doi:10.1007/s11010-006-9175-x17036165
  • JungBI, KimMS, KimHA, et al. Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res. 2010;24(2):295–300. doi:10.1002/ptr.296619655397
  • ZhaoYH, PangXK, NepalA, et al. Caffeic acid phenethyl ester effects: in silico study of its osteoimmunological mechanisms. Lett Drug Des Discov. 2020;17(5):556–562. doi:10.2174/1570180815666180803111902
  • Larki-HarcheganiA, HemmatiAA, ArziA, et al. Evaluation of the effects of caffeic acid phenethyl ester on prostaglandin E2 and two key cytokines involved in bleomycin-induced pulmonary fibrosis. Iran J Basic Med Sci. 2013;16(7):850–857.23997916
  • SaegusaM, MurakamiM, NakataniY, et al. Contribution of membrane-associated prostaglandin E2 synthase to bone resorption. J Cell Physiol. 2003;197(3):348–356. doi:10.1002/jcp.1035614566964
  • lnternational Agency for Research on Cancer. Caffeic acid. IARC monographs on the evaluation of carcinogenic risks to humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Vol 56 Lyon, France: lnternational Agency for Research on Cancer, World Health Organization; 1993:115–134.
  • HagiwaraA, HiroseM, TakahashiS, et al. Forestomach and kidney carcinogenicity of caffeic acid in F344 rats and C57BL/6N x C3H/HEN F1 mice. Cancer Res. 1991;51:5655–5660.1913684
  • HiroseM, FukushimaS, ShiraiT, et al. Stomach carcinogenicity of caffeic acid, sesamol and catechol in rats and mice. Jpn J Cancer Res. 1990;81:207–212. doi:10.1111/j.1349-7006.1990.tb02550.x2112522
  • HiroseM, TakesadaY, TanakaH, et al. Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis. 1997;19(1):207–212. doi:10.1093/carcin/19.1.207
  • ZhengYQ, XuFB, ZhouS, et al. [abortifacient activity of caffeic acid and its antiprogestational action in early pregnant mice]. Acta Pharmacol Sin. 1987;8(3):250–254.
  • LiuY, QiuS, WangL, et al. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem Toxicol. 2019;123:106–112. doi:10.1016/j.fct.2018.10.04030366071