379
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Cinnamaldehyde Improves Metabolic Functions in Streptozotocin-Induced Diabetic Mice by Regulating Gut Microbiota

, , , , , & show all
Pages 2339-2355 | Published online: 01 Jun 2021

References

  • NorrisJM, JohnsonRK, SteneLC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8(3):226–238. doi:10.1016/S2213-8587(19)30412-731999944
  • HowardSG, SargisRM. Type 1 diabetes-origins and epidemiology. Lancet Diabetes Endocrinol. 2020;8(5):367–368. doi:10.1016/S2213-8587(20)30106-632333869
  • ZimmetP, AlbertiKG, MaglianoDJ, BennettPH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616–622. doi:10.1038/nrendo.2016.10527388988
  • HuangJ, HuangG, LiX, et al. Altered systemic and intestinal IgA immune responses in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2020;105(12):e4616–e4625. doi:10.1210/clinem/dgaa590
  • Perna-BarrullD, GierasA, Rodriguez-FernandezS, TolosaE, Vives-PiM. Immune system remodelling by prenatal betamethasone: effects on β-cells and type 1 diabetes. Front Endocrinol (Lausanne). 2020;11:540. doi:10.3389/fendo.2020.0054032849311
  • SurS. In silico analysis reveals interrelation of enriched pathways and genes in type 1 diabetes. Immunogenetics. 2020;72(8):399–412. doi:10.1007/s00251-020-01177-332860078
  • CelikerC, KalkanR. Genetic and epigenetic perspective of microbiota. Appl Microbiol Biotechnol. 2020;104(19):8221–8229. doi:10.1007/s00253-020-10849-932857199
  • SteinwaySN, SalehJ, KooBK, DelacourD, KimDH. Human microphysiological models of intestinal tissue and gut microbiome. Front Bioeng Biotechnol. 2020;8:725. doi:10.3389/fbioe.2020.0072532850690
  • YangQ, WangY, JiaA, WangY, BiY, LiuG. The crosstalk between gut bacteria and host immunity in intestinal inflammation. J Cell Physiol. 2020. doi:10.1002/jcp.30024
  • GérardP. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147–162. doi:10.1007/s00018-015-2061-526459447
  • PattersonE, RyanPM, CryanJF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286–300. doi:10.1136/postgradmedj-2015-13328526912499
  • ThursbyE, JugeN. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi:10.1042/BCJ2016051028512250
  • HanH, LiY, FangJ, et al. Gut microbiota and type 1 diabetes. Int J Mol Sci. 2018;19(4):995. doi:10.3390/ijms19040995
  • JamshidiP, HasanzadehS, TahvildariA, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog. 2019;11(1):49. doi:10.1186/s13099-019-0332-731636716
  • SiljanderH, HonkanenJ, KnipM. Microbiome and type 1 diabetes. EBioMedicine. 2019;46:512–521. doi:10.1016/j.ebiom.2019.06.03131257149
  • HaukkaJK, SandholmN, ForsblomC, CobbJE, GroopPH, FerranniniE. Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes. Sci Rep. 2018;8(1):13853. doi:10.1038/s41598-018-32085-y30217994
  • RehniAK, DaveKR. Impact of hypoglycemia on brain metabolism during diabetes. Mol Neurobiol. 2018;55(12):9075–9088. doi:10.1007/s12035-018-1044-629637442
  • AbbissH, MakerGL, TrengoveRD. Metabolomics approaches for the diagnosis and understanding of kidney diseases. Metabolites. 2019;9(2):34. doi:10.3390/metabo9020034
  • ZhuR, LiuH, LiuC, et al. Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacol Res. 2017;122:78–89. doi:10.1016/j.phrs.2017.05.01928559210
  • AbdelmageedME, ShehatouGS, AbdelsalamRA, SuddekGM, SalemHA. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(2):243–258. doi:10.1007/s00210-018-1583-430460386
  • JawaleA, DatusaliaAK, BishnoiM, SharmaSS. Reversal of diabetes-induced behavioral and neurochemical deficits by cinnamaldehyde. Phytomedicine. 2016;23(9):923–930. doi:10.1016/j.phymed.2016.04.00827387400
  • KhareP, JagtapS, JainY, et al. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors. 2016;42(2):201–211. doi:10.1002/biof.126526893251
  • YangL, WuQQ, LiuY, HuZF, BianZY, TangQZ. Cinnamaldehyde attenuates pressure overload-induced cardiac hypertrophy. Int J Clin Exp Pathol. 2015;8(11):14345–14354.26823750
  • ZuoJ, ZhaoD, YuN, et al. Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell Physiol Biochem. 2017;42(4):1514–1525. doi:10.1159/00047926828719892
  • WangD, HouJ, YangY, et al. Cinnamaldehyde ameliorates high-glucose-induced oxidative stress and cardiomyocyte injury through transient receptor potential ankyrin 1. J Cardiovasc Pharmacol. 2019;74(1):30–37. doi:10.1097/FJC.000000000000067931274840
  • CaniPD, AmarJ, IglesiasMA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi:10.2337/db06-149117456850
  • SilkDB, DavisA, VulevicJ, TzortzisG, GibsonGR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29(5):508–518. doi:10.1111/j.1365-2036.2008.03911.x19053980
  • AndreasenAS, LarsenN, Pedersen-SkovsgaardT, et al. Effects of lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010;104(12):1831–1838. doi:10.1017/S000711451000287420815975
  • EjtahedHS, Mohtadi-NiaJ, Homayouni-RadA, NiafarM, Asghari-JafarabadiM, MofidV. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–543. doi:10.1016/j.nut.2011.08.01322129852
  • JungSP, LeeKM, KangJH, et al. Effect of lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med. 2013;34(2):80–89. doi:10.4082/kjfm.2013.34.2.8023560206
  • Al-SalamiH, ButtG, TuckerI, SkrbicR, Golocorbin-KonS, MikovM. Probiotic pre-treatment reduces gliclazide permeation (ex vivo) in healthy rats but increases it in diabetic rats to the level seen in untreated healthy rats. Arch Drug Inf. 2008;1(1):35–41. doi:10.1111/j.1753-5174.2008.00006.x20157366
  • ValladaresR, SankarD, LiN, et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One. 2010;5(5):e10507. doi:10.1371/journal.pone.001050720463897
  • PathakP, XieC, NicholsRG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–1588. doi:10.1002/hep.2985729486523
  • ZhangL, XieC, NicholsRG, et al. Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism. mSystems. 2016;1(5). doi:10.1128/mSystems.00070-16.
  • FormanBM, GoodeE, ChenJ, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81(5):687–693. doi:10.1016/0092-8674(95)90530-87774010
  • ZhangY, LeeFY, BarreraG, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–1011. doi:10.1073/pnas.050698210316410358
  • AliAH, CareyEJ, LindorKD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5. doi:10.3978/j.issn.2305-5839.2014.12.0625705637
  • InagakiT, MoschettaA, LeeYK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi:10.1073/pnas.050959210316473946
  • SunL, XieC, WangG, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–1929. doi:10.1038/s41591-018-0222-430397356
  • GonzalezFJ, JiangC, PattersonAD. An intestinal microbiota-farnesoid x receptor axis modulates metabolic disease. Gastroenterology. 2016;151(5):845–859. doi:10.1053/j.gastro.2016.08.05727639801
  • JiangC, XieC, LiF, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125(1):386–402. doi:10.1172/JCI7673825500885
  • LiFX, ZhuJW, TessemJS, et al. The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proc Natl Acad Sci U S A. 2003;100(22):12935–12940. doi:10.1073/pnas.223186110014566047
  • KimSY, RaneSG. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development. 2011;138(10):1903–1912. doi:10.1242/dev.06148121490060
  • AbramovaMV, PospelovaTV, NikulenkovFP, HollanderCM, FornaceAJ Jr., PospelovVA. G1/S arrest induced by histone deacetylase inhibitor sodium butyrate in E1A + Ras-transformed cells is mediated through down-regulation of E2F activity and stabilization of beta-catenin. J Biol Chem. 2006;281(30):21040–21051. doi:10.1074/jbc.M51105920016717102
  • CusiK, MaezonoK, OsmanA, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105(3):311–320. doi:10.1172/JCI753510675357
  • Cordero-HerreraI, MartínMA, BravoL, GoyaL, RamosS. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res. 2013;57(6):974–985. doi:10.1002/mnfr.20120050023456781
  • MontagnaniM, RavichandranLV, ChenH, EspositoDL, QuonMJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol. 2002;16(8):1931–1942. doi:10.1210/me.2002-007412145346
  • AlameddineA, FajlounZ, BourreauJ, et al. The cardiovascular effects of salidroside in the goto-kakizaki diabetic rat model. J Physiol Pharmacol. 2015;66(2):249–257.25903955