313
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Dopamine-Mediated Vanillin Multicomponent Derivative Synthesis via Grindstone Method: Application of Antioxidant, Anti-Tyrosinase, and Cytotoxic Activities

, , , ORCID Icon & ORCID Icon
Pages 787-802 | Published online: 23 Feb 2021

References

  • LiuJ, CaoR, YiW, et al. A class of potent tyrosinase Inhibitors alkylidenethiosemicarbazide compounds. Eur J Med Chem. 2009;44(4):1773–1778. doi:10.1016/j.ejmech.2008.04.00218524420
  • GarciaA, FultonJE. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol Surg. 1996;22(5):443–447. doi:10.1111/j.1524-4725.1996.tb00345.x.8634807
  • TajimaR, OozekiH, MuraokaS, et al. Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors. Eur J Med Chem. 2011;46(4):1374–1381. doi:10.1016/j.ejmech.2011.01.065.21334791
  • LeeSY, BaekN, NamTG. Natural semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2016;31(1):1–13. doi:10.3109/14756366.2015.1004058.
  • ChangTS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440–2475. doi:10.3390/ijms10062440.19582213
  • Thome AnderssonK, SternerO, HanssonC. Tyrosinase mediated formation of a reactive quinone from the depigmenting agents 4-tertbutyphenol and 4-tert-butyl-catechol. Pigment Cell Res. 2000;13:33–38. doi:10.1034/j.1600-0749.2000.130107.x.10761994
  • ZuoAIR, DongHH, YuYY, et al. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med. 2018;13:51. doi:10.1186/s13020-018-020630364385
  • BelaidiAA, BushAI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–197. doi:10.1111/jnc.13425
  • DhanalakshmiC, ManivasagamT, NatarajJ, Justin ThenmozhiA, EssaMM. Neurosupportive role of vanillin a natural phenolic compound on rotenone induced neurotoxicity in SHSY5Y neuroblastoma cells. Alternat Med. 2015;626028. doi:10.1155/2015/626028
  • AshrafZ, RafiqM, SeoSY, BabarMM, ZaidiNS. Synthesis kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem. 2015;23(17):5780. doi:10.1016/j.bmc.2015.06.068.
  • UntungJ, IskandarsyahI, HayunH. 2-[(2,6-Dimethylmorpholin-4-yl)methyl]-4-[(E)- 2-{3-[(E)-2-{3-[(2,6-dimethylmorpholin-4-yl)methyl]-4-hydroxy-5-methoxy phenyl} ethenyl]- 1H-pyrazol-5-yl}ethenyl]-6-methoxyphenol. Molbank. 2017;3:M949. doi:10.3390/M949
  • ToureBB, HallDG. Natural product synthesis using multicomponent reaction strategies. Chem Rev. 2009;109:4439–4486. doi:10.1021/cr800296p.19480390
  • ParkDH, VenkatesanJ, KimSK, RamkumarV, ParthibanP. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. Bioorg Med Chem Lett. 2012;22:6362–6367. doi:10.1039/c8md00446c.22995623
  • GulHI, OjanenT, VepsalainenJ, et al. Vanillic Mannich bases synthesis and screening of biological activity Mechanistic insight into the reaction with 4-chloroaniline. RSC Adv. 2001;51:72–75. doi:10.1039/c4ra03909b
  • KouskouraM, Hadjipavlou LitinaD, GiakoumakouM. Crystal structure of 3-(4-methoxy phenyl)-1-(4-methylphenyl)prop-2-en-1-one, C17H16O2. Med Chem. 2008;4:586–596. doi:10.1515/ncrs-2016-0357.18991744
  • MalinkaW, SwiatekP, FilipekB, SapaJ, JerierskaA, KollA. 4-(4-Bromobenzylideneamino)- 3-{1-[4-(2-methylpropyl)phenyl]ethyl}-1-(morpholinomethyl)-1H-1,2,4-triazole-5(4H) -thione. Farmaco. 2005;60:961–968. doi:10.1107/S16005368080225416223500
  • HollaBS, VeerendraB, ShivanandaMK, PoojaryB. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4-triazoles. Eur J Med Chem. 2003;38:759–767. doi:10.1016/s0223-5234(03)00128-4.12932907
  • FerlinMG, ChiarelottoG, AntonucciF, CaparrottaL, FroldiG. 1-(2-Benzoyl-1-phenylethyl)-4-[(2-hydroxy-1-naphthyl)methylideneamino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione. Eur J Med Chem. 2002;37:427–434. doi:10.1107/S1600536810052979.12008057
  • LopesF, CapelaR, GoncavesJO, et al. Crystal structure spectroscopic and redox behaviour of novel imidazolidine ligand. Tetrahedron Lett. 2004;45:7663–7666. doi:10.1016/j.molstruc.2010.10.037
  • JoshiS, KhoslaN, TiwariP. In vitro study of some medicinally important Mannich bases derived from antitubercular agent. Bioorg Med Chem. 2004;12:571–576. doi:10.1016/j.bmc.2003.11.00114738966
  • RomanG. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem. 2015;89:743–816. doi:10.1016/j.ejmech.2014.10.076.25462280
  • BandgarBP, PatilSA, GaccheRN, et al. Synthesis and biological evaluation of nitrogen-containing chalcones as possible anti-inflammatory and antioxidant agents. Bioorganic Med Chem Lett. 2010;20:730. doi:10.1016/j.bmcl.2009.11.068.
  • KarakayaaG, TurebA, ErcancA, OnculcS, AytemiraMD. Synthesis computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg Chem. 2019;88:102950. doi:10.1016/j.bioorg.2019.102950.31075740
  • KimGH, KimJE, RhieSJ, YoonS. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24:325–340. doi:10.5607/en.2015.24.4.325.26713080
  • CobleyJN, FiorelloML, BaileyDM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. doi:10.1016/j.redox.2018.01.008.29413961
  • PatelM. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci. 2016;37:768–778. doi:10.1016/j.tips.2016.06.007.27491897
  • ButterfieldDA, DrakeJ, PocernichC, CastegnaA. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med. 2001;7:548. doi:10.1016/S1471-4914(01)02173-611733217
  • HuangX, MoirRD, TanziRE, BushAI, RogersJT. Redox-active metals, oxidative stress, Alzheimer’s disease pathology. Ann NY Acad Sci. 2014;1012:153–163. doi:10.1196/annals
  • ZduńskaK, DanaA, KolodziejczakA, RotsztejnH. Skin pharmacol physiol, antioxidant properties of ferulic acid. Skin Pharmacol Physiol. 2018;31:332–336. doi:10.1159/000491755.30235459
  • KimD, ParkJ, KimJ. Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study. J Agric Food Chem. 2006;54:935–941. doi:10.1021/jf0521855.16448205
  • KhatibS, NeryaO, MusaR, ShmuelM, TamirS, VayaJ. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg Med Chem. 2005;13:433–441. doi:10.1016/j.bmc.2004.10.01015598564
  • GrzesikM, NaparłoK, BartoszG, Sadowska-BartoszI. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 2018;241:480–492. doi:10.1016/j.foodchem.2017.08.11728958556
  • EvacuasianyE, RatnawatiH, LianaLK, et al. Cytotoxic and antioxidant activities of catechins in inhibiting the malignancy of breast cancer. Oxid Antioxid Med Sci. 2014;3(2):141–146. doi:10.5455/oams.240614.or.066
  • GuoN, WangC, ShangC, YouX, ZhangL, LiuW. Integrated study of the mechanism of tyrosinase inhibition by baicalein using kinetic, multispectroscopic and computational simulation analyses. Int J Biol Micromol. 2018;118:57–68. doi:10.1016/j.ijbiomac.2018.06.055
  • ShimizuK, YasutakeS, KondoR. A new stilbene with tyrosinase inhibitory activity from Chlorophora excelsa. Chem Pharm Bull. 2003;51:318–319. doi:10.1248/cpb.51.318.
  • KenjiO, ToshiyukiT, TetsuroI. Inhibitory effects of resveratrol derivatives from dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem. 2003;67:1587–1589. doi:10.1271/bbb.67.158712913307
  • HalaouliS, AstherM, KruusK. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol. 2005;98:332–343. doi:10.1111/j.1365-2672.2004.02481.x.15659188
  • SahuRK, RoyA, DwivediJ, JhaAK. Promotion and computation of inhibitory effect on tyrosinase activity of herbal cream by incorporating indigenous medicinal plants. Pak J Biol Sci. 2014;17:146–150. doi:10.3923/pjbs.2014.146.150.24783796
  • DembitskyVM, KilimnikA. Anti-melanoma agents derived from fungal species. M J Pharma Sci. 2016;1:1–16.
  • MaghsoudiS, AdibiH, HamzehM, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. J Rep Pharma Sci. 2013;2:156–164.
  • JeonSH, JongHK, Kwang HoonK. Inhibitory effects on L-dopa oxidation of tyrosinase by skin-whitening agents. Bull Korean Chem Soc. 2005;26:1135–1137. doi:10.5012/bkcs.2005.26.7.1135
  • Fenandez-BertranJF. Mechanochemistry: an overview. Pure Appl Chem. 1999;71:581–586. doi:10.1351/pac19997104058
  • WalshPJ, LiH, ParrodiCA. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev. 2007;107:2503. doi:10.1021/cr0509556.17530908
  • BoseAK, PednekarS, GangulySN, ChakrabortyG, ManhasMS. 1,5-Bis(4-chlorophenyl)-3-(2-thienyl)-pentane-1,5-dione. Tetrahedron Lett. 2004;45:8351–8353. doi:10.1107/S1600536808038993.
  • GarayAL, PichonA, JamesSL. Solvent free synthesis of metal complexes. Chem Soc Rev. 2007;36:846–855. doi:10.1039/B600363J.17534472
  • AlaklabiA, ArifIA, AhamedA, Radhakrishnan Surendra KumarRS, IdhayadhullaA. Evaluation of antioxidant and anticancer activities of chemical constituents of the Saururus chinensis root extracts. Saudi J Biol Sci. 2018;25:1387–1392. doi:10.1016/j.sjbs.2016.12.02130505186
  • Surendra KumarR, MoydeenM, Al-DeyabSS, AseerM, IdhayadhullaA. Synthesis of new morpholine-connected pyrazolidine derivatives and their antimicrobial, antioxidant, and cytotoxic activities. Bioorg Med Chem Lett. 2017;27:66–71. doi:10.1016/j.bmcl.2016.11.03227889456
  • XiaL, IdhayadhullaA, Rok LeeYR, WeeYJ, KimSH. Anti- tyrosinase, antioxidant, and antibacterial activities of novel 5- hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans. Eur J Med Chem. 2014;86:605–612. doi:10.1021/co500002s25218909
  • FındıkE, CeylanM, ElmastasM. Isoeugenol-based novel potent antioxidants: synthesis and reactivity. Eur J Med Chem. 2011;46:4618–4624. doi:10.1016/j.ejmech.2011.07.04121843909
  • AroraA, NairMG, StrasburgGM. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biol Med. 1998;24(9):1355–1363. doi:10.1016/s0891-5849(97)00458-9.9641252
  • Rice-EvansCA, MillerNJ, PagangaG. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20:933–956. doi:10.1016/0891-5849(95)02227-98743980
  • Rice-EvansCA, MillerNJ, PagangaG. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–159. doi:10.1016/S1360-1385(97)01018-2
  • LinL, DongY, ZhaoH, WenaL, YangB, ZhaoM. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and a-glucosidase. Food Chem. 2011;129:884–889. doi:10.1016/j.foodchem.2011.05.039.25212314
  • KangHS, ParkHJ, KimHR, ByunDS, ChoiJS. Rosmarinic acid as a tyrosinase inhibitors from salvia miltiorrhiza. Nat Prod Sci. 2004;10:80–84.
  • PiazzonA, VrhovsekU, MasueroD, MattiviF, MandojF, NardiniM. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic Acids and of the acyl glucuronide of ferulic Acid. J Agric Food Chem. 2012;60:12312–12323. doi:10.1021/jf304076z23157164
  • GulcinI. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids. 2007;32:431–438. doi:10.1007/s00726-006-0379-x.16932840
  • TaiA, SawanoT, YazamaF, ItoH. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim Biophys Acta. 2011;1810:170–177. doi:10.1016/j.bbagen.2010.11.004.21095222
  • AshrafZ, RafiqM, SeoSY, et al. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem. 2015;23(17):5870–5880. doi:10.1016/j.bmc.2015.06.06826204890
  • AkimovMG, GretskayaNM, ZinchenkoGN, BezuglovVV. Cytotoxicity of endogenous lipids N-acyl dopamines and their possible metabolic derivatives for human cancer cell lines of different histological origin. Anticancer Res. 2015;35:2657–2662.25964542
  • BattainiG, MonzaniE, CasellaL, SantagostiniL, PagliarinR. Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J Biol Inorg Chem. 2000;5:262–268. doi:10.1007/s007750050370.10819471
  • BezerraGSN, PereiraMAV, OstroskyEA, et al. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim. 2017;127:1683–1691. doi:10.1007/s10973-016-5654-9
  • LodoviciM, GuglielmiF, MeoniM, DolaraP. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol. 2001;39:1205–1210. doi:10.1016/s0278-6915(01)00067-9.11696394
  • MasellaR, VariR, d’ArchivioM, et al. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LD by increasing the mRNA transcription of glutathione-related enzymes. J Nutr. 2004;134:785–791. doi:10.1093/jn/134.4.785.15051826
  • Scharffetter-KochanekK, BrenneisenP, WenkJ, HerrmannG, MaW, KuhrL. Photoaging of the skin from phenotype to mechanisms. Exp Gerontol. 2000;35:307–316. doi:10.1016/S0531-5565(00)00098-X10832052