790
Views
100
CrossRef citations to date
0
Altmetric
Review

The Risks of miRNA Therapeutics: In a Drug Target Perspective

, , &
Pages 721-733 | Published online: 22 Feb 2021

References

  • LeeRC, FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi:10.1016/0092-8674(93)90529-y8252621
  • ElbashirSM, HarborthJ, LendeckelW, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi:10.1038/3507810711373684
  • MullardA. 2018 FDA drug approvals. Nat Rev Drug Discov. 2019;18:85–89. doi:10.1038/d41573-019-00014-x30710142
  • MullardA. 2019 FDA drug approvals. Nat Rev Drug Discov. 2020;19:79–84. doi:10.1038/d41573-020-00001-732020068
  • LiZ, RanaTM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13:622–638. doi:10.1038/nrd435925011539
  • BandieraS, PfefferS, BaumertTF, ZeiselMB. miR-122–a key factor and therapeutic target in liver disease. J Hepatol. 2015;62:448–457. doi:10.1016/j.jhep.2014.10.00425308172
  • BertoliG, CavaC, CastiglioniI. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122–1143. doi:10.7150/thno.1154326199650
  • GanjuA, KhanS, HafeezBB, et al. miRNA nanotherapeutics for cancer. Drug Discov Today. 2017;22:424–432. doi:10.1016/j.drudis.2016.10.01427815139
  • RupaimooleR, SlackFJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–222. doi:10.1038/nrd.2016.24628209991
  • ZarinDA, TseT, WilliamsRJ, CaliffRM, IdeNC. The ClinicalTrials.gov results database–update and key issues. N Engl J Med. 2011;364:852–860. doi:10.1056/NEJMsa101206521366476
  • JingHZ, QiuF, ChenSZ, SuL, QuC. [Tripartite-motif protein 25 and pyruvate kinase M2 protein expression in non-small cell lung cancer]. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35:437–441. Chinese.25818796
  • van der ReeMH, de VreeJM, StelmaF, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet. 2017;389:709–717. doi:10.1016/S0140-6736(16)31715-928087069
  • WengY, XiaoH, ZhangJ, LiangXJ, HuangY. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–825. doi:10.1016/j.biotechadv.2019.04.01231034960
  • TaoJL, LuoM, SunH, et al. Overexpression of tripartite motif containing 26 inhibits non-small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J Med Sci. 2020;36:417–422. doi:10.1002/kjm2.1219432052576
  • HuangHY, LinY-C-D, LiJ, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48:D148–D154. doi:10.1093/nar/gkz89631647101
  • MullardA. 2015 FDA drug approvals. Nat Rev Drug Discov. 2016;15:73–76. doi:10.1038/nrd.2016.1526837582
  • SantosR, UrsuO, GaultonA, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16:19–34. doi:10.1038/nrd.2016.23027910877
  • MullardA. 2016 FDA drug approvals. Nat Rev Drug Discov. 2017;16:73–76. doi:10.1038/nrd.2017.1428148938
  • MullardA. 2017 FDA drug approvals. Nat Rev Drug Discov. 2018;17:81–85. doi:10.1038/nrd.2018.429348678
  • XieC, MaoX, HuangJ, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–W322. doi:10.1093/nar/gkr48321715386
  • GirardM, JacqueminE, MunnichA, LyonnetS, Henrion-CaudeA. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48:648–656. doi:10.1016/j.jhep.2008.01.01918291553
  • WangD, SunX, WeiY, et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 2018;46:2012–2029. doi:10.1093/nar/gkx125429253196
  • TuratoC, FornariF, PollutriD, et al. MiR-122 targets SerpinB3 and is involved in sorafenib resistance in hepatocellular carcinoma. J Clin Med. 2019;8:171. doi:10.3390/jcm8020171
  • KanehisaM, SatoY. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35. doi:10.1002/pro.371131423653
  • CesanaM, CacchiarelliD, LegniniI, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–369. doi:10.1016/j.cell.2011.09.02822000014
  • HansenTB, JensenTI, ClausenBH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388. doi:10.1038/nature1199323446346
  • DavisME, ChenZG, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–782. doi:10.1038/nrd261418758474
  • MullerRH, KeckCM. Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–170. doi:10.1016/j.jbiotec.2004.06.00715380654
  • GuanS, ZhangQ, BaoJ, HuR, CzechT, TangJ. Recognition sites for cancer-targeting drug delivery systems. Curr Drug Metab. 2019;20:815–834. doi:10.2174/138920022066619100316111431580248
  • ZhaoH, YuanX, YuJ, et al. Magnesium-stabilized multifunctional DNA nanoparticles for tumor-targeted and ph-responsive drug delivery. ACS Appl Mater Interfaces. 2018;10:15418–15427. doi:10.1021/acsami.8b0193229676144
  • CoreyDR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest. 2007;117:3615–3622. doi:10.1172/JCI3348318060019
  • ForbesDC, PeppasNA. Oral delivery of small RNA and DNA. J Control Release. 2012;162:438–445. doi:10.1016/j.jconrel.2012.06.03722771979
  • GrimmD, StreetzKL, JoplingCL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–541. doi:10.1038/nature0479116724069
  • KhanAA, BetelD, MillerML, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol. 2009;27:549–555. doi:10.1038/nbt.154319465925
  • ZhangY, WangZ, GemeinhartRA. Progress in microRNA delivery. J Control Release. 2013;172:962–974. doi:10.1016/j.jconrel.2013.09.01524075926
  • LabbayeC, SpinelloI, QuarantaMT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10:788–801. doi:10.1038/ncb174118568019
  • PanW, ZhuS, YuanM, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4 + T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010;184:6773–6781. doi:10.4049/jimmunol.090406020483747
  • ReddySD, PakalaSB, OhshiroK, RayalaSK, KumarR. MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res. 2009;69:5639–5642. doi:10.1158/0008-5472.CAN-09-089819584269
  • ZhangJ, ZhouY, MaL, et al. The alteration of miR-222 and its target genes in nickel-induced tumor. Biol Trace Elem Res. 2013;152:267–274. doi:10.1007/s12011-013-9619-623447020
  • SunC, LiNA, ZhouBO, et al. miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27(kip1.). Oncol Lett. 2013;6:507–512. doi:10.3892/ol.2013.139324137356
  • LiuX, YuJ, JiangL, et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics. 2009;6:131–139.19487542
  • FornariF, GramantieriL, FerracinM, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–5661. doi:10.1038/onc.2008.17818521080
  • YeZ, HaoR, CaiY, WangX, HuangG. Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biol. 2016;37:4509–4515. doi:10.1007/s13277-015-4267-426503209
  • GramantieriL, FornariF, FerracinM, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–5081. doi:10.1158/1078-0432.CCR-09-009219671867
  • YangT, ZhangG-F, ChenX-F, et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem Biophys Res Commun. 2013;436:578–584. doi:10.1016/j.bbrc.2013.05.07923727574
  • WangP, ZouF, ZhangX, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69:8157–8165. doi:10.1158/0008-5472.CAN-09-199619826040
  • FuYR, LiuX-J, LiX-J, et al. MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol. 2015;89:1070–1082. doi:10.1128/JVI.01740-1425378484
  • ZhangS, WanY, PanT, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide. J Mol Neurosci. 2012;47:346–356. doi:10.1007/s12031-012-9759-822528454
  • AsanganiIA, RasheedSAK, NikolovaDA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–2136. doi:10.1038/sj.onc.121085617968323
  • HiyoshiY, KamoharaH, KarashimaR, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res. 2009;15:1915–1922. doi:10.1158/1078-0432.CCR-08-254519276261
  • LiS, FuH, WangY, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology. 2009;49:1194–1202. doi:10.1002/hep.2275719133651
  • LuoW, LiG, YiZ, NieQ, ZhangX. E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci Rep. 2016;6:27904. doi:10.1038/srep2790427282946
  • RyanJ, TivnanA, FayJ, et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer. 2012;107:967–976. doi:10.1038/bjc.2012.35622892391
  • LuanW, QianY, NiX, et al. miR-204-5p acts as a tumor suppressor by targeting matrix metalloproteinases-9 and B-cell lymphoma-2 in malignant melanoma. Onco Targets Ther. 2017;10:1237–1246. doi:10.2147/OTT.S12881928280358
  • CochraneDR, SpoelstraNS, HoweEN, NordeenSK, RicherJK. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009;8:1055–1066. doi:10.1158/1535-7163.MCT-08-104619435871
  • ZhangQQ, XuH, HuangM-B, et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro Oncol. 2012;14:278–287. doi:10.1093/neuonc/nor21622217655
  • JiaLF, WeiSB, GongK, GanYH, YuGY, KimAL. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS One. 2013;8:e56634. doi:10.1371/journal.pone.005663423451060
  • LuoQ, WeiC, LiX, et al. MicroRNA-195-5p is a potential diagnostic and therapeutic target for breast cancer. Oncol Rep. 2014;31:1096–1102. doi:10.3892/or.2014.297124402230
  • HanK, ChenX, BianN, et al. MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget. 2015;6:8875–8889. doi:10.18632/oncotarget.356025823925
  • JiJ, YamashitaT, BudhuA, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–480. doi:10.1002/hep.2298919585654
  • ZhangXJ, YeH, ZengCW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 2010;3:46. doi:10.1186/1756-8722-3-4621106054
  • PogueAI, LiYY, CuiJ-G, et al. Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem. 2009;103:1591–1595. doi:10.1016/j.jinorgbio.2009.05.01219540598
  • XuZ, ZengX, XuJ, et al. Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro Oncol. 2016;18:830–839. doi:10.1093/neuonc/nov29826681767
  • MinamiK, TaniguchiK, SugitoN, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget. 2017;8:33064–33077. doi:10.18632/oncotarget.1652428380435
  • HuM, XiaM, ChenX, et al. MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci. 2010;55:2365–2372. doi:10.1007/s10620-009-1008-919830559
  • LiuLY, WangW, ZhaoLY, et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int J Oncol. 2014;45:1257–1265. doi:10.3892/ijo.2014.251624969300
  • BaiS, NasserMW, WangB, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–32027. doi:10.1074/jbc.M109.01677419726678
  • SampathD, CalinGA, PuduvalliVK, et al. Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood. 2009;113:3744–3753. doi:10.1182/blood-2008-09-17870719096009
  • LuoZL, LuoH-J, FangC, et al. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dictates metastatic progression in pancreatic cancer. Oncotarget. 2016;7:1477–1485. doi:10.18632/oncotarget.639526621835
  • VaramballyS, CaoQ, ManiR-S, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–1699. doi:10.1126/science.116539519008416
  • AlajezNM, ShiW, HuiABY, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010;1:e85. doi:10.1038/cddis.2010.6421368858
  • ChenDL, JuH-Q, LuY-X, et al. Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression. J Exp Clin Cancer Res. 2016;35:142. doi:10.1186/s13046-016-0420-127620004
  • LiuJ, LuK-H, LiuZ-L, et al. MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer. 2012;12:519. doi:10.1186/1471-2407-12-51923151088
  • NasserMW, DattaJ, NuovoG, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008;283:33394–33405. doi:10.1074/jbc.M80478820018818206
  • ZhuX, WuL, YaoJ, et al. MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma. PLoS One. 2015;10:e0124266. doi:10.1371/journal.pone.012426625909324
  • YeZ, ShenN, WengY, et al. Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Cancer Biol Ther. 2015;16:1071–1079. doi:10.1080/15384047.2015.104602425961369
  • VilardoE, BarbatoC, CiottiM, CogoniC, RubertiF. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem. 2010;285:18344–18351. doi:10.1074/jbc.M110.11266420395292
  • GarzonR, LiuS, FabbriM, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113:6411–6418. doi:10.1182/blood-2008-07-17058919211935
  • ZhangX, ZhuW, ZhangJ, et al. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem Biophys Res Commun. 2010;395:275–280. doi:10.1016/j.bbrc.2010.04.00520381459
  • ZhangJ, ZhaoH, ChenJ, et al. Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett. 2012;586:3255–3262. doi:10.1016/j.febslet.2012.06.04722771905
  • LeiK, DuW, LinS, et al. 3B, a novel photosensitizer, inhibits glycolysis and inflammation via miR-155-5p and breaks the JAK/STAT3/SOCS1 feedback loop in human breast cancer cells. Biomed Pharmacother. 2016;82:141–150. doi:10.1016/j.biopha.2016.04.04927470349
  • PathakS, GrilloAR, ScarpaM, et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med. 2015;47:e164. doi:10.1038/emm.2015.2125998827
  • JiJ, ZhaoL, BudhuA, et al. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol. 2010;52:690–697. doi:10.1016/j.jhep.2009.12.02520338660
  • MajidS, DarAA, SainiS, et al. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 2010;70:2809–2818. doi:10.1158/0008-5472.CAN-09-417620332239
  • ChenJ, FeilotterHE, ParéGC, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–2529. doi:10.2353/ajpath.2010.09106120304954
  • TieJ, PanY, ZhaoL, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010;6:e1000879. doi:10.1371/journal.pgen.100087920300657
  • DoebeleC, BonauerA, FischerA, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood. 2010;115:4944–4950. doi:10.1182/blood-2010-01-26481220299512
  • JiangL, LiuX, KolokythasA, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010;127:505–512. doi:10.1002/ijc.2532020232393
  • JinY, ChenZ, LiuX, ZhouX. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 2013;936:117–127. doi:10.1007/978-1-62703-083-0_1023007504
  • KonieczkowskiDJ, GarrawayLA. Resistance to EGFR blockade in colorectal cancer: liquid biopsies and latent subclones. Cell Res. 2013;23:13–14. doi:10.1038/cr.2012.11522847744