163
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Tetramethylpyrazine Improves Cognitive Function of Alzheimer’s Disease Mice by Regulating SSTR4 Ubiquitination

, , , &
Pages 2385-2399 | Published online: 01 Jun 2021

References

  • Crous-BouM, MinguillonC, GramuntN, MolinuevoJL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9(1):71. doi:10.1186/s13195-017-0297-z28899416
  • BondiMW, EdmondsEC, SalmonDP. Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc. 2017;23(9–10):818–831. doi:10.1017/S135561771700100X29198280
  • Serrano-PozoA, FroschMP, MasliahE, HymanBT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189. doi:10.1101/cshperspect.a00618922229116
  • BriggsR, KennellySP, O’NeillD. Drug treatments in Alzheimer’s disease. Clin Med. 2016;16(3):247–253. doi:10.7861/clinmedicine.16-3-247
  • WellerJ, BudsonA. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:1161. doi:10.12688/f1000research.14506.1
  • GaoLB, YuXF, ChenQ, ZhouD. Alzheimer’s Disease therapeutics: current and future therapies. Minerva Med. 2016;107(2):108–113.26933835
  • PangPK, ShanJJ, ChiuKW. Tetramethylpyrazine, a calcium antagonist. Planta Med. 1996;62(5):431–435. doi:10.1055/s-2006-9579338923809
  • WangM, QinHL, LengJ, et al. Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. Chem Biol Drug Des. 2018;92(5):1859–1866. doi:10.1111/cbdd.1335529923315
  • ZhaoY, LiuY, ChenK. Mechanisms and clinical application of tetramethylpyrazine (an interesting natural compound isolated from ligusticum wallichii): current status and perspective. Oxid Med Cell Longev. 2016;2016:2124638. doi:10.1155/2016/212463827668034
  • CaiX, ChenZ, PanX, et al. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis. PLoS One. 2014;9(2):e88176. doi:10.1371/journal.pone.008817624505417
  • ZhouH, ShaoM, YangX, et al. Tetramethylpyrazine analogue T-006 exerts neuroprotective effects against 6-hydroxydopamine-induced Parkinson’s disease in vitro and in vivo. Oxid Med Cell Longev. 2019;2019:8169125. doi:10.1155/2019/816912531827703
  • SaitoT, IwataN, TsubukiS, et al. Somatostatin regulates brain amyloid β peptide Aβ 42 through modulation of proteolytic degradation. Nat Med. 2005;11(4):434–439. doi:10.1038/nm120615778722
  • KossutM, LukomskaA, DobrzanskiG, Liguz-LecznarM. Somatostatin receptors in the brain. Postepy Biochem. 2018;64(3):213–221. doi:10.18388/pb.2018_13330656906
  • ScheichB, CsekoK, BorbelyE, et al. Higher susceptibility of somatostatin 4 receptor gene-deleted mice to chronic stress-induced behavioral and neuroendocrine alterations. Neuroscience. 2017;346:320–336. doi:10.1016/j.neuroscience.2017.01.03928161436
  • SandovalKE, FarrSA, BanksWA, CriderAM, MorleyJE, WittKA. Somatostatin receptor subtype-4 agonist NNC 26-9100 decreases extracellular and intracellular Aβ(1)(-)(4)(2) trimers. Eur J Pharmacol. 2012;683(1–3):116–124. doi:10.1016/j.ejphar.2012.03.02022449380
  • RowlandsDK, CuiYG, SoSC, TsangLL, ChungYW, ChanHC. Bak Foong Pills induce an analgesic effect by inhibiting nociception via the somatostatin pathway in mice. Cell Biol Int. 2012;36(1):63–69. doi:10.1042/CBI2011001521980955
  • PopovicD, VucicD, DikicI. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–1253. doi:10.1038/nm.373925375928
  • YuL, LiuY, YangH, et al. PSD-93 attenuates amyloid-β-mediated cognitive dysfunction by promoting the catabolism of amyloid-β. J Alzheimers Dis. 2017;59(3):913–927. doi:10.3233/JAD-17032028697571
  • GimbelDA, NygaardHB, CoffeyEE, et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci. 2010;30(18):6367–6374. doi:10.1523/JNEUROSCI.0395-10.201020445063
  • YangQ, HuangDD, LiDG, et al. Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3beta signaling pathway. Cell Mol Biol Lett. 2019;24:17. doi:10.1186/s11658-019-0141-530858867
  • PengY, LiuJ, TangY, et al. High-Fat-diet-induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice. Front Cell Neurosci. 2014;8:225. doi:10.3389/fncel.2014.0022525152713
  • MaT, DuX, PickJE, SuiG, BrownleeM, KlannE. Glucagon-like peptide-1 cleavage product GLP-1 (9-36)amide rescues synaptic plasticity and memory deficits in Alzheimer’s disease model mice. J Neurosci. 2012;32(40):13701–13708. doi:10.1523/JNEUROSCI.2107-12.201223035082
  • DesgentS, DussS, SanonNT, et al. Early-life stress is associated with gender-based vulnerability to epileptogenesis in rat pups. PLoS One. 2012;7(8):e42622. doi:10.1371/journal.pone.004262222880055
  • ZhangQQ, DingY, LeiY, et al. Andrographolide suppress tumor growth by inhibiting TLR4/NF-kappaB signaling activation in insulinoma. Int J Biol Sci. 2014;10(4):404–414. doi:10.7150/ijbs.772324719558
  • BraakH, BraakE. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi:10.1007/BF003088091759558
  • TsokasP, MaT, IyengarR, LandauEM, BlitzerRD. Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. J Neurosci. 2007;27(22):5885–5894. doi:10.1523/JNEUROSCI.4548-06.200717537959
  • YouF, LiQ, JinG, ZhengY, ChenJ, YangH. Genistein protects against Abeta25-35 induced apoptosis of PC12 cells through JNK signaling and modulation of Bcl-2 family messengers. BMC Neurosci. 2017;18(1):12. doi:10.1186/s12868-016-0329-928081713
  • TaMH, LiuwantaraD, RanganGK. Effects of pyrrolidine dithiocarbamate on proliferation and nuclear factor-kappaB activity in autosomal dominant polycystic kidney disease cells. BMC Nephrol. 2015;16:212. doi:10.1186/s12882-015-0193-326666710
  • ZhengX, XieZ, ZhuZ, et al. Methyllycaconitine alleviates amyloid-beta peptides-induced cytotoxicity in SH-SY5Y cells. PLoS One. 2014;9(10):e111536. doi:10.1371/journal.pone.011153625360664
  • ZhangM, LiQ, ChenL, et al. PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiol Dis. 2014;68:104–111. doi:10.1016/j.nbd.2014.04.01024787897
  • Del PreteD, RiceRC, RajadhyakshaAM, D’AdamioL. Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem. 2016;291(33):17209–17227. doi:10.1074/jbc.M116.73362627325702
  • ZouY, LiuQ, ChenB, et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet. 2007;80(3):561–566. doi:10.1086/51248917273978
  • WuTY, ChenCP, JinnTR. Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol. 2011;50(2):131–135. doi:10.1016/j.tjog.2011.04.00421791295
  • LiuP, KongM, YuanS, LiuJ, WangP. History and experience: a survey of traditional Chinese medicine treatment for Alzheimer’s disease. Evid Based Complement Alternat Med. 2014;2014:642128. doi:10.1155/2014/64212824624220
  • FanLH, WangKZ, ChengB, WangCS, DangXQ. Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48. doi:10.1186/1471-2202-7-4816774675
  • GongG, YuanL, CaiL, et al. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons. PLoS One. 2014;9(9):e105944. doi:10.1371/journal.pone.010594425237906
  • WuW, YuX, LuoXP, YangSH, ZhengD. Tetramethylpyrazine protects against scopolamine-induced memory impairments in rats by reversing the cAMP/PKA/CREB pathway. Behav Brain Res. 2013;253:212–216. doi:10.1016/j.bbr.2013.07.05223916742
  • RohnTT, WirawanE, BrownRJ, HarrisJR, MasliahE, VandenabeeleP. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis. 2011;43(1):68–78. doi:10.1016/j.nbd.2010.11.00321081164
  • TianM, LinX, WuL, LuJ, ZhangY, ShiJ. Angiotensin II triggers autophagy and apoptosis in PC12 cell line: an in vitro Alzheimer’s disease model. Brain Res. 2019;1718:46–52. doi:10.1016/j.brainres.2019.05.00231054884
  • TanZ. Erratum: neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor. 2009;2(3):137–144. doi:10.1007/s12177-009-9033-720046848
  • LiuHC, EnikolopovG, ChenY. Cul4B regulates neural progenitor cell growth. BMC Neurosci. 2012;13:112. doi:10.1186/1471-2202-13-11222992378
  • WangHL, ChangNC, WengYH, YehTH. XLID CUL4B mutants are defective in promoting TSC2 degradation and positively regulating mTOR signaling in neocortical neurons. Biochim Biophys Acta. 2013;1832(4):585–593. doi:10.1016/j.bbadis.2013.01.01023348097
  • RamosB, Baglietto-VargasD, Del RioJC, et al. Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol Aging. 2006;27(11):1658–1672. doi:10.1016/j.neurobiolaging.2005.09.02216271420
  • GrosserC, NeumannL, HorsthemkeB, ZeschnigkM, van de NesJ. Methylation analysis of SST and SSTR4 promoters in the neocortex of Alzheimer’s disease patients. Neurosci Lett. 2014;566:241–246. doi:10.1016/j.neulet.2014.02.04624602981
  • SandovalKE, FarrSA, BanksWA, CriderAM, MorleyJE, WittKA. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Abeta(42) oligomers via a metalloproteinase-dependent mechanism. Brain Res. 2013;1520:145–156. doi:10.1016/j.brainres.2013.05.00623669069
  • OddoS. The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med. 2008;12(2):363–373. doi:10.1111/j.1582-4934.2008.00276.x18266959
  • NarayanPJ, LillC, FaullR, CurtisMA, DragunowM. Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol Dis. 2015;74:281–294. doi:10.1016/j.nbd.2014.11.02325484284
  • MellerR. The role of the ubiquitin proteasome system in ischemia and ischemic tolerance. Neuroscientist. 2009;15(3):243–260. doi:10.1177/107385840832780919181875