788
Views
53
CrossRef citations to date
0
Altmetric
Original Research

Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study

, , , , , ORCID Icon & show all
Pages 659-677 | Published online: 17 Feb 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29. doi:10.3322/caac.2125425559415
  • DasariS, TchounwouPB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;5:364–378. doi:10.1016/j.ejphar.2014.07.025
  • HaritT, BellaouchiR, AsehraouA, RahalM, BouabdallahI, MalekF. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. J Mol Struct. 2017;1133:74–79. doi:10.1016/j.molstruc.2016.11.051
  • MishraP, MiddhaA, SaxenaV, SaxenaA. Synthesis and evaluation of anti-inflammatory activity of some cinnoline derivatives-4 (−2-amino-thiophene) cinnoline-3-carboxamide. J Pharm Biosci. 2016;4:64–68. doi:10.20510/ukjpb/4/i3/108388
  • MathewB, SureshJ, AnbazhaganS. Synthesis, in silico preclinical evaluation, antidepressant potential of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole- 1-carboxamides. Biomed Aging Pathol. 2014;4:327–333. doi:10.1016/j.biomag.2014.08.002
  • AshourHM, ShaabanOG, RizkOH, El-AshmawyIM. Synthesis and biological evaluation of thieno[2′, 3′: 4, 5]pyrimido[1, 2-b][1, 2, 4]triazines and thieno [2,3-d][1, 2, 4] triazolo [1, 5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur J Med Chem. 2013;62:341–351. doi:10.1016/j.ejmech.2012.12.00323376247
  • ThirumuruganR, SriramD, SaxenaA, StablesJ, YogeeswariP. 2,4-Dimethoxyphenyl- semicarbazones with anticonvulsant activity against three animal models of seizures: synthesis and pharmacological evaluation. Bioorg Med Chem. 2006;14:3106–3112. doi:10.1016/j.bmc.2005.12.04116413192
  • ArchnaP, ChawlaS. Thiophene-based derivatives as anticancer agents: an overview on decade’swork. Bioorg Chem. 2020;101:1040262. doi:10.1016/j.bioorg.2020.104026
  • GulHI, YamaliC, SakagamiH, et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem. 2018;77:411–419.29427856
  • KasibhatlaS, KuemmerleJ, KemnitzerO-MW, et al. Discovery and structure-activity relationship of 3-aryl-5-aryl-1, 2, 4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J Med Chem. 2005;48:5215–5223. doi:10.1021/jm050292k16078840
  • MilikSN, Abdel-AzizAK, LasheenDS, SeryaRA, MinucciS, AbouzidKA. Surmounting the resistance against EGFR inhibitors through the development of thieno [2, 3-d] pyrimidine-based dual EGFR/HER2 inhibitors. Eur J Med Chem. 2018;155:316–336. doi:10.1016/j.ejmech.2018.06.01129902719
  • HirschFR, WittaS. Biomarkers for prediction of sensitivity to EGFR inhibitors in non-small cell lung cancer. Curr Opin Oncol. 2005;17:118–122. doi:10.1097/01.cco.0000155059.39733.9d15725915
  • GulipalliKC, BodigeS, RavulaP, et al. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: a potent tyrosine phosphatase 1B inhibitor and anticancer activity. Bioorg Med Chem Lett. 2017;27:3558–3564. doi:10.1016/j.bmcl.2017.05.04728579122
  • CappellacciL, GrifantiniM, BarziA, et al. Furanfurin and thiophenfurin: two novel tiazofurin analogues. Synthesis, structure, antitumour activity, and interactions with inosine monophosphate dehydrogenase. J Med Chem. 1995;38:3829–3837. doi:10.1021/jm00019a0137562914
  • LiX, HeY, RuizCH, KoenigM, CameronMD. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos. 2009;37:1242–1250. doi:10.1124/dmd.108.02593219282395
  • Hu-LieskovanS, MokS, Homet MorenoB, et al. Improved antitumour activity of immunotherapy with B-RAF and MEK inhibitors in BRAF (V600E) melanoma. Sci Transl Med. 2015;18(279):41–279.
  • YaoY, ChenS, ZhouX, XieL, ChenA. 5-FU and ixabepilone modify the microRNA expression profiles in MDA-MB-453 triple-negative breast cancer cells. Oncol Lett. 2014;7:541–547. doi:10.3892/ol.2013.169724396484
  • AltmannKH. Epothilone B and its analogs - a new family of anticancer agents. Mini Rev Med Chem. 2003;3:149–158.12570848
  • SharmaPC, BansalKK, SharmaA, SharmaD, DeepA. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020;188:112016.31926469
  • CascioferroS, ParrinoB, CarboneD, et al. Thiazoles, their benzofused systems, and thiazolidinone derivatives: versatile and promising tools to combat antibiotic resistance. J Med Chem. 2020;63:7923–7956. doi:10.1021/acs.jmedchem.9b0124532208685
  • AyatiA, EmamiS, AsadipourA, ShafieeA, ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem. 2015;97:699–718. doi:10.1016/j.ejmech.2015.04.01525934508
  • SayedAR, GomhaSM, TaherEA, et al. Synthesis of novel thiazoles as potential anti- cancer agents. Drug Des Devel Ther. 2020;14:1363–1375. doi:10.2147/DDDT.S221263
  • DasD, SikdarP, BairagiM. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur J Med Chem. 2016;109:89–98. doi:10.1016/j.ejmech.2015.12.02226771245
  • LuY, LiCM, WangZ, et al. Design, synthesis, and SAR studies of 4-substituted methoxylbenzoyl-arylthiazoles analogues as potent and orally bioavailable anticancer agents. J Med Chem. 2011;54:4678–4693. doi:10.1021/jm200342721557538
  • ChowdhuryA, PatelS, SharmaA, DasA, MeshramP, ShardA. A perspective on environmentally benign protocols of thiazole synthesis. Chem Heterocycl Comp. 2020;56:455–463. doi:10.1007/s10593-020-02680-x
  • BragaSFP, FonsecaNC, RamosJP, FagundesEMS, OliveiraRB. Synthesis and cytotoxicity evaluation of thiosemicarbazones and their thiazole derivatives. Braz J Pharm Sci. 2016;52:299–308. doi:10.1590/S1984-82502016000200008
  • ShaikSP, NayakVL, SultanaF, et al. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: microtubule-destabilizing agents. Eur J Med Chem. 2017;126:36–51. doi:10.1016/j.ejmech.2016.09.06027744185
  • CascioferroS, PetriGL, ParrinoB, et al. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem. 2020;189:112088. doi:10.1016/j.ejmech.2020.11208832007666
  • CascioferroS, PetriGL, ParrinoB, et al. 3-(6-phenylimidazo[2,1-b][1,3,4]thiadiazol-2-yl)-1H-indole derivatives as new anticancer agents in the treatment of pancreatic ductal adenocarcinoma. Molecules. 2020;25:329. doi:10.3390/molecules25020329
  • ZhaoMY, YinY, YuX, et al. Synthesis, biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as B-RAF (V600E) inhibitors. Bioorg Med Chem. 2015;23:46–54. doi:10.1016/j.bmc.2014.11.02925496804
  • AndreaniA, BurnelliS, GranaiolaM, et al. New antitumour imidazo[2,1-b]thiazole guanylhydrazones and analogues. J Med Chem. 2008;51:809–816.18251494
  • GomhaSM, EdreesMM, AltalbawyF. Synthesis and characterization of some new bis-pyrazolyl-thiazoles incorporating the thiophene moiety as potent antitumor agents. Int J Mol Sci. 2016;17:1499. doi:10.3390/ijms17091499
  • MoharebRM, AbdallahAE. Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-amino-4, 5, 6, 7-tetrahydrobenzo [b] thiophene-3-carbonitrile. Acta Pharmaceutica. 2017;67:495–510. doi:10.1515/acph-2017-004029337677
  • MoharebRM, FleitaDH, SakkaOK. Novel synthesis of hydrazidehydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumour activity. Molecules. 2011;16:16–27. doi:10.3390/molecules16010016
  • ZhenY, StenmarkH. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128:3171–3176. doi:10.1242/jcs.16607426272922
  • PeiG, BronietzkiM, GutierrezMG. Immune regulation of Rab proteins expression and intracellular transport. J Leukoc Biol. 2012;92:41–50. doi:10.1189/jlb.021207622496357
  • MartinezO, GoudB. Rab proteins. Biochim Biophys Acta. 1998;1404:101–112. doi:10.1016/S0167-4889(98)00050-09714762
  • ProgidaC, CogliL, PiroF, De LucaA, BakkeO. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci. 2010;123:1480–1491. doi:10.1242/jcs.05147420375062
  • ProgidaC, NielsenMS, KosterG, BucciC, BakkeO. Dynamics of Rab7b-dependent transport of sorting receptors. Traffic. 2012;13:1273–1285. doi:10.1111/j.1600-0854.2012.01388.x22708738
  • BasuRayS. Rab7a: the master regulator of vesicular trafficking. Biomed Rev. 2014;25:67–81. doi:10.14748/bmr.v25.1049
  • Borg DistefanoM, HofstadHL, WangY. TBC1D5 controls the GTPase cycle of Rab7b. J of Cell Sci. 2018;131:jcs216630. doi:10.1242/jcs.21663030111580
  • GuerraF, BucciC. Multiple roles of the small GTPase Rab7. Cells. 2016;5:34. doi:10.3390/cells5030034
  • AbdelmonsefAH, DulapalliR, DasariT, PadmaraoLS, MukkeraT, VuruputuriU. Identification of novel antagonists for Rab38 protein by homology modeling and virtual screening. Comb Chem High Throughput Screen. 2016;19:875–892. doi:10.2174/138620731966616102615323727784220
  • AbdelmonsefAH. Computer-aided identification of lung cancer inhibitors through homology modeling and virtual screening. Egypt J Med Hum Genet. 2019;20:1–14.
  • AbdelmonsefAH, MosallamAM. Synthesis, in vitro biological evaluation and in silico docking studies of new quinazolin‐2,4‐dione analogues as possible anticarcinoma agents. J Heterocycl Chem. 2020;57:1637–1654. doi:10.1002/jhet.3889
  • XieJ, YanY, LiuF, et al. Knockdown of Rab7a suppresses the proliferation, migration, and xenograft tumor growth of breast cancer cells. Biosci Rep. 2019;39:BSR20180480. doi:10.1042/BSR2018048029769411
  • RashdanHRM, GomhaSM, El-GendeyMS, El-HashashMA, SolimanAMM. Eco-friendly one-pot Synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem Lett Rev. 2018;11:264–274. doi:10.1080/17518253.2018.1474270
  • GomhaSM, RiyadhSM, MahmmoudEA, ElaasserMM. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles. 2015;91:1227–1243. doi:10.3987/COM-15-13210
  • DasariT, KondagariB, DulapalliR, et al. Design of novel lead molecules against RhoG protein as cancer target–a computational study. J Biomol Struct Dyn. 2017;35:3119–3139. doi:10.1080/07391102.2016.124449227691842
  • HollingsworthSA, KarplusPA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010;1:271–283. doi:10.1515/bmc.2010.02221436958
  • TianW, ChenC, LeiX, ZhaoJ, LiangJ. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–W367. doi:10.1093/nar/gky47329860391
  • O’BoyleNM, BanckM, JamesCA, MorleyC, VandermeerschT, HutchisonGR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi:10.1186/1758-2946-3-3321982300
  • RappéAK, CasewitCJ, ColwellKS, GoddardWA, SkiffWM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035. doi:10.1021/ja00051a040
  • DallakyanS, OlsonAJ. Small-Molecule Library Screening by Docking with PyRx. Chem Biol Springer. 2015;1263:243–250.
  • El-NaggarM, MohamedME, MosallamAM, SalemW, RashdanHR, AbdelmonsefAH. Synthesis, characterization, antibacterial activity, and computer-aided design of novel quinazolin-2,4-dione derivatives as potential inhibitors against vibrio cholerae. Evol Bioinform. 2020;16:1–13. doi:10.1177/1176934319897596
  • AboubakrHA, LavanyaSP, ThirupathiM, RohiniR, SaritaRP, UmaV. Human Rab8b protein as a cancer target - An in silico study. J Comput Sci Syst Biol. 2016;9:132–149.
  • SahuS, GhoshSK, GahtoriP, PratapSU, BhattacharyyaDR, BhatHR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep. 2019;71:762–767. doi:10.1016/j.pharep.2019.04.00631351317
  • WangY, XingJ, XuY, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48:488–515. doi:10.1017/S003358351500019026328949
  • ChengF, LiW, ZhouY, et al. A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52:3099–3105. doi:10.1021/ci300367a23092397
  • MakamP, ThakurPK, KannanT. In vitro and in silico antimalarial activity of 2-(2-hydrazinyl) thiazole derivatives. Eur J Pharmaceut Sci. 2014;52:138–145. doi:10.1016/j.ejps.2013.11.001
  • GomhaSM, RiyadhSM, MahmmoudEA, ElaasserMM. Chitosan-grafted-poly (4-vinylpyridine) as a novel copolymer basic catalyst for synthesis of arylazothiazoles and 1,3,4-thiadiazoles under microwave irradiation. Chem Heterocycl Compd. 2015;51:1030–1038. doi:10.1007/s10593-016-1815-9
  • GomhaSM, AbdelrazekFM, AbdelrahmanAH, MetzP. Synthesis of some novel thiazole, thiadiazole and 1, 4-phenylene-bis-thiazole derivatives as potent antitumor agents. Heterocycles. 2016;92:954–967. doi:10.3987/COM-16-13443
  • SayedAR, GomhaSM, AbdelrazekFM, FarghalyMS, HassanSA, PeterM. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem. 2019;13:116. doi:10.1186/s13065-019-0632-531572983
  • AbdelhamidAO, GomhaSM, AbdelriheemNA, KandeelSM. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecule. 2016;21:929. doi:10.3390/molecules21070929
  • GomhaSM, MuhammadZA, Abdel‐azizMR, Abdel‐azizHM, GaberHM, ElaasserMM. One‐pot synthesis of new thiadiazolyl‐pyridines as anticancer and antioxidant agents. J Heterocycl Chem. 2018;55:530–536. doi:10.1002/jhet.3088
  • GomhaSM, KhederNA, AbdelazizMR, MabkhotYN, AlhajojAM. A facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4‑thiadiazole moiety. Chemistry Central J. 2017;11:25. doi:10.1186/s13065-017-0255-7
  • GomhaSM, AbdelazizMR, KhederNA, Abdel-azizHM, AlteraryS, MabkhotYNA. Facile access and evaluation of some novel thiazole and 1,3,4-thiadiazole derivatives incorporating thiazole moiety as potent anticancer agents. Chemistry Central J. 2017;11:105. doi:10.1186/s13065-017-0335-8
  • GomhaSM, EdreesMM, MuhammadZA, El-ReedyAAM. 5-(Thiophen-2-yl)-1,3,4- thiadiazole derivatives: synthesis, molecular docking and in-vitro cytotoxicity evaluation as potential anticancer agents. Drug Des Devel Ther. 2018;12:1511–1523. doi:10.2147/DDDT.S165276
  • GomhaSM, AbdelhamidAO, KandilOM, KandeelSM, AbdelrehemNA. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini-Rev Med Chem. 2018;18:1670–1682. doi:10.2174/138955751866618042411381929692239
  • EdreesMM, Abu-MelhaS, SaadAM, KhederNA, GomhaSM, MuhammadZA. Eco-friendly synthesis, characterization and biological evaluation of some new pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents. Molecules. 2018;23:1970. doi:10.3390/molecules23112970
  • Abu-MelhaS, EdreesMM, SalemHH, KhederNA, GomhaSM, AbdelazizMR. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules. 2019;24:539. doi:10.3390/molecules24030539
  • ShakyaB, YadavPN. Thiosemicarbazones as potent anticancer agents and their modes of action. Mini-Rev Med Chem. 2020;20:638–661.31660812
  • MuhammedMT, Aki-YalcinE. Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des. 2019;93:12–20. doi:10.1111/cbdd.1338830187647
  • LaskowskiRA. PDB sum: summaries and analyses of PDB structures. Nucleic Acids Res. 2002;29:221–222. doi:10.1093/nar/29.1.221
  • WilkinsMR, GasteigerE, BairochA, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–552. doi:10.1385/1-59259-584-7:53110027275
  • ShehadiIA, RashdanHRM, AbdelmonsefAH. Homology modeling and virtual screening studies of antigen MLAA-42Protein: identification of novel drug candidates against leukemia-an in silico approach. Comput Math Methods Med. 2020;12.
  • YurievE, AgostinoM, RamslandPA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24:149–164. doi:10.1002/jmr.107721360606
  • HenrichS, FeierbergI, WangT, BlombergN, WadeRC. Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins. 2010;78:135–153. doi:10.1002/prot.2257919768680
  • HarediAA, EldeebMM, El-NaggarM, TemairkH, MohamedMA. Novel quinazolin-2,4-dione hybrid molecules as possible inhibitors against malaria: synthesis and in silico molecular docking studies. Front Mol Biosci. 2020;7. doi: 10.3389/fmolb.2020.00105.
  • LipinskiCA, LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and develop ment settings. Adv Drug Deliv Rev. 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1
  • PajouheshH, LenzGR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2:541–553. doi:10.1602/neurorx.2.4.54116489364