244
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Design, Synthesis, Molecular Modelling, and Biological Evaluation of Oleanolic Acid-Arylidene Derivatives as Potential Anti-Inflammatory Agents

, , , ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 385-397 | Published online: 04 Feb 2021

References

  • StankovSV. Definition of inflammation, causes of inflammation and possible anti-inflammatory strategies. Open Inflamm J. 2012;5(1):1–9. doi:10.2174/1875041901205010001
  • TracyRP. The five cardinal signs of inflammation: calor, dolor, rubor, tumor … and penuria (apologies to Aulus Cornelius Celsus, De medicina, c. AD 25). J Gerontol a Biol Sci Med Sci. 2006;61(10):1051–1052. doi:10.1093/gerona/61.10.105117077197
  • RatherL. Disturbance of function (functio laesa): the legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of celsus. Bull N Y Acad Med. 1971;47(3):303.5276838
  • Ferrero‐MilianiL, NielsenO, AndersenP, GirardinS. Chronic inflammation: importance of NOD2 and NALP3 in interleukin‐1β generation. Clin Exp Immunol. 2007;147(2):227–235.17223962
  • HawigerJ, ZienkiewiczJ. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol. 2019;90(6):e12812. doi:10.1111/sji.1281231378956
  • TaamsLS. Inflammation and immune resolution. Clin Exp Immunol. 2018;193(1):1–2. doi:10.1111/cei.1315529987840
  • KollerGM, SchaferC, KempSS, et al. Pro-inflammatory mediators, IL (interleukin)-1β, TNF (tumor necrosis factor) α, and thrombin directly induce capillary tube regression. Arterioscler Thromb Vasc Biol. 2020;40(2):365–377. doi:10.1161/ATVBAHA.119.31353631852224
  • ZanoliL, BrietM, EmpanaJP, et al. Vascular consequences of inflammation: a position statement from the ESH working group on vascular structure and function and the ARTERY society. J Hypertens. 2020;38(9):1682–1698. doi:10.1097/HJH.000000000000250832649623
  • MedzhitovR. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428. doi:10.1038/nature0720118650913
  • RatesSMK. Plants as source of drugs. Toxicon. 2001;39(5):603–613. doi:10.1016/S0041-0101(00)00154-911072038
  • NewmanDJ, CraggGM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–477. doi:10.1021/np068054v17309302
  • GosslauA, LiS, HoCT, ChenKY, RawsonNE. The importance of natural product characterization in studies of their anti‐inflammatory activity. Mol Nutr Food Res. 2011;55(1):74–82. doi:10.1002/mnfr.20100045521207514
  • LeeKH, ItokawaH, AkiyamaT, Morris‐NatschkeSL. Plant-derived natural products research in drug discovery. Nat Prod Chem Biol. 2012;65:351–388.
  • SpainhourCB. Natural products. Pharm Sci Encycl. 2010;1–62.
  • CraggGM, GrothausPG, NewmanDJ. Natural products in drug discovery: recent advances In: Cechinel-Filho V, editor. Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives. 4th ed. Hoboken: Wiley; 2012:1–42.
  • StrömstedtAA, FelthJ, BohlinL. Bioassays in natural product research–strategies and methods in the search for anti‐inflammatory and antimicrobial activity. Phytochem Anal. 2014;25(1):13–28. doi:10.1002/pca.246824019222
  • LeeKH, ItokawaH, AkiyamaT, Morris‐NatschkeSL. Plant‐derived natural products research: recent progress in drug discovery In: Wiley Encyclopedia of Chemical Biology. Hoboken: Wiley; 2007:1–22.
  • LachanceH, WetzelS, WaldmannH. Role of Natural Products in Drug Discovery. Wiley Online Library; 2010:187–229.
  • NunesC, Barreto ArantesM, Menezes de Faria PereiraS, et al. Plants as sources of anti-inflammatory agents. Molecules. 2020;25(16):3726. doi:10.3390/molecules25163726
  • MirRH, ShahAJ, Mohi-Ud-DinR, et al. Natural Anti-inflammatory compounds as drug candidates in alzheimer’s disease Current Medicinal Chemistry. In press 2020.
  • HassanR, MasoodiMH. Saussurea lappa: a comprehensive review on its pharmacological activity and phytochemistry. Curr Tradit Med. 2020;6(1):13–23. doi:10.2174/2215083805666190626144909
  • MirRH, MasoodiMH. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr Bioact Compd. 2020;16(6):809–817. doi:10.2174/1573407215666190419205317
  • GrableyS, SattlerI. Natural products for lead identification: nature is a valuable resource for providing tools In: Hillisch A, Hilgenfeld R, editors. Modern Methods of Drug Discovery. Springer; 2003:87–107.
  • LeeK-H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Nat Prod. 2010;73(3):500–516. doi:10.1021/np900821e20187635
  • GautamR, JachakSM. Recent developments in anti‐inflammatory natural products. Med Res Rev. 2009;29(5):767–820.19378317
  • KobyliakN, FalalyeyevaT, MykhalchyshynG, KyriienkoD, KomissarenkoI. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr. 2018;12(5):617–624. doi:10.1016/j.dsx.2018.04.01529661605
  • NanceCL. Clinical efficacy trials with natural products and herbal medicines In: RamzanI, editor. Phytotherapies: Efficacy, Safety and Regulation. Hoboken: Wiley; 2015:65–88.
  • FreireMO, Van DykeTE. Natural resolution of inflammation. Periodontology. 2013;63(1):149–164. doi:10.1111/prd.12034
  • MirRH, SawhneyG, VermaR, et al. Oreganum vulgare: in-vitro assessment of cytotoxicity, molecular docking studies, antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Med Chem. 2020. doi:10.2174/1573406416666200904110828
  • BhatMF, HassanR, MasoodiMH. Nuclear magnetic resonance (NMR) for plant profiling and disease metabolomics-fast tracking plant based drug discovery from northern India. Nucl Magn Reson. 2018;2:1.
  • VaneJR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–235. doi:10.1038/newbio231232a05284360
  • PrestwichGD, AbeI, ZhengYF, RobustellBJ, DangT. Enzymatic cyclization of squalene analogs. Pure Appl Chem. 1999;71(6):1127–1131. doi:10.1351/pac199971061127
  • JägerS, TrojanH, KoppT, LaszczykM, SchefflerA. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14(6):2016–2031. doi:10.3390/molecules1406201619513002
  • MengY-Q, LiuD, Cai-L-L, ChenH, CaoB, WangY-Z. The synthesis of ursolic acid derivatives with cytotoxic activity and the investigation of their preliminary mechanism of action. Bioorg Med Chem. 2009;17(2):848–854. doi:10.1016/j.bmc.2008.11.03619091579
  • KwonT-H, LeeB-M, ChungS-H, KimD-H, LeeY-S. Synthesis and NO production inhibitory activities of ursolic acid and oleanolic acid derivatives. Bull Korean Chem Soc. 2009;30(1):119–123.
  • IkedaY, MurakamiA, OhigashiH. Ursolic acid: an anti‐and pro‐inflammatory triterpenoid. Mol Nutr Food Res. 2008;52(1):26–42. doi:10.1002/mnfr.20070038918203131
  • LiuJ. Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol. 2005;100(1–2):92–94. doi:10.1016/j.jep.2005.05.02415994040
  • TianZ, LinG, ZhengR-X, HuangF, YangM-S, XiaoP-G. Anti-hepatoma activity and mechanism of ursolic acid and its derivatives isolated from Aralia decaisneana. World J Gastroenterol. 2006;12(6):874. doi:10.3748/wjg.v12.i6.87416521214
  • ShyuM-H, KaoT-C, YenG-C. Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem. 2010;58(10):6110–6118. doi:10.1021/jf100574j20415421
  • MaC, NakamuraN, MiyashiroH, HattoriM, ShimotohnoK. Inhibitory effects of ursolic acid derivatives from Cynomorium songaricum, and related triterpenes on human immunodeficiency viral protease. Phytother Res. 1998;12(S1):S138–S142.
  • CosP, MaesL, Vanden BergheD, HermansN, PietersL, VlietinckA. Plant substances as anti-HIV agents selected according to their putative mechanism of action. J Nat Prod. 2004;67(2):284–293. doi:10.1021/np034016p14987070
  • YuD, SakuraiY, ChenC-H, et al. Anti-AIDS agents 69. moronic acid and other triterpene derivatives as novel potent anti-HIV agents. J Med Chem. 2006;49(18):5462–5469. doi:10.1021/jm060191216942019
  • PathakA, SinghS, BiabaniM, et al. Synthesis of combinatorial libraries based on terpenoid scaffolds. Comb Chem High Throughput Screen. 2002;5(3):241–248. doi:10.2174/138620702460727511966432
  • LiuJ. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol. 1995;49(2):57–68. doi:10.1016/0378-8741(95)90032-28847885
  • PatelNK, PulipakaS, DubeySP, BhutaniKK. Pro-inflammatory cytokines and nitric oxide inhibitory constituents from Cassia occidentalis roots. Nat Prod Commun. 2014;9(5):1934578X1400900519.
  • PatelNK, BhutaniKK. Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-α and IL-1β production: in vitro and in vivo experimentation. Phytomedicine. 2014;21(7):946–953. doi:10.1016/j.phymed.2014.02.01124680612
  • BhandariP, PatelNK, BhutaniKK. Synthesis of new heterocyclic lupeol derivatives as nitric oxide and pro-inflammatory cytokine inhibitors. Bioorg Med Chem Lett. 2014;24(15):3596–3599. doi:10.1016/j.bmcl.2014.05.03224909081
  • NgocTD, MoonsN, KimY, et al. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg Med Chem. 2014;22(13):3292–3300. doi:10.1016/j.bmc.2014.04.06124844757
  • UrbanM, VlkM, DzubakP, HajduchM, SarekJ. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid. Bioorg Med Chem. 2012;20(11):3666–3674. doi:10.1016/j.bmc.2012.03.06622551630
  • HaavikkoR, NasereddinA, Sacerdoti-SierraN, et al. Heterocycle-fused lupane triterpenoids inhibit Leishmania donovani amastigotes. MedChemComm. 2014;5(4):445–451. doi:10.1039/C3MD00282A
  • RashidS, DarBA, MajeedR, HamidA, BhatBA. Synthesis and biological evaluation of ursolic acid-triazolyl derivatives as potential anti-cancer agents. Eur J Med Chem. 2013;66:238–245. doi:10.1016/j.ejmech.2013.05.02923811086
  • TangC, ZhuL, ChenY, et al. Synthesis and biological evaluation of oleanolic acid derivative–chalcone conjugates as α-glucosidase inhibitors. RSC Adv. 2014;4(21):10862–10874. doi:10.1039/C3RA46492J
  • XuX, YinP, WanC, et al. Punicalagin inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation. 2014;37(3):956–965. doi:10.1007/s10753-014-9816-224473904
  • JooT, SowndhararajanK, HongS, et al. inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J Biol Sci. 2014;21(5):427–435. doi:10.1016/j.sjbs.2014.04.00325313277
  • DeethRJ, FeyN, Williams-HubbardB. DommiMOE: an implementation of ligand field molecular mechanics in the molecular operating environment. J Comput Chem. 2005;26(2):123–130. doi:10.1002/jcc.2013715584081
  • PappalardoE, CantoneD. Database systems in biology In: Barolli L, editor. Enterprise Business Modeling, Optimization Techniques, and Flexible Information Systems. IGI Global; 2013:80–96.
  • HeinzerlingL, KleinR, RareyM. Fast force field‐based optimization of protein–ligand complexes with graphics processor. J Comput Chem. 2012;33(32):2554–2565. doi:10.1002/jcc.2309422911510
  • ZhangZ, LiY, LinB, SchroederM, HuangB. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011;27(15):2083–2088. doi:10.1093/bioinformatics/btr33121636590
  • CaoY, DaiW, MiaoZ. Evaluation of protein–ligand docking by Cyscore In: Gore M, Jagtap UB, editor. Computational Drug Discovery and Design. Springer; 2018:233–243.
  • LiH, LeungK-S, WongM-H, BallesterPJ. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinform. 2014;15(1):291. doi:10.1186/1471-2105-15-291
  • AmmonH. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine. 2010;17(11):862–867. doi:10.1016/j.phymed.2010.03.00320696559
  • LinW-C, LinJ-Y. Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro. J Agric Food Chem. 2010;59(1):184–192. doi:10.1021/jf103581r21155568
  • LiH, SzeKH, LuG, BallesterPJ. Machine‐learning scoring functions for structure‐based drug lead optimization. Wiley Interdiscip Rev Comput Mol Sci. 2020;e1465.