139
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Geniposide from Gardenia jasminoides var. radicans Makino Attenuates Myocardial Injury in Spontaneously Hypertensive Rats via Regulating Apoptotic and Energy Metabolism Signalling Pathway

, , , , , , & show all
Pages 949-962 | Published online: 03 Mar 2021

References

  • HanX, WangC, LiY, et al. miR-29b in regulating blood pressure and cardiac function in the rat model of hypertension. Exp Ther Med. 2019;17(5):3361–3366. doi:10.3892/etm.2019.733530988712
  • MatsushitaN, IshidaN, IbiM, et al. Chronic pressure overload induces cardiac hypertrophy and fibrosis via increases in SGLT1 and IL-18 gene expression in mice. Int Heart J. 2018;59(5):1123–1133. doi:10.1536/ihj.17-56530101852
  • KooA, LiKM. Phytochemical properties and hypotensive mechanism of extracts from Gardenia jasminoides seeds. Am J Chin Med. 1977;5:7–31. doi:10.1142/S0192415X7700004X
  • CaoY, ZhengX, QiM, et al. Phenolic constituents from fruit of Gardenia jasminosides var. radicans. Chin Tradit Herb Drugs. 2017;22:4615–4619. doi:10.7501/j.issn.0253-2670.2017.22.004
  • NgTM, KonopkaE, HyderiAF, et al. Comparison of bumetanide- and metolazone-based diuretic regimens to furosemide in acute heart failure. J Cardiovasc Pharmacol Ther. 2013;18(4):345–353. doi:10.1177/107424841348275523538300
  • FuY, YuanPP, CaoYG, et al. Geniposide in Gardenia jasminoides var. radicans Makino modulates blood pressure via inhibiting WNK pathway mediated by the estrogen receptors. J Pharm Pharmacol. 2020;72(12):1956–1969. doi:10.1111/jphp.1336132830328
  • LiY, WangL, DongZ, et al. Cardioprotection of salvianolic acid B and ginsenoside Rg1 combination on subacute myocardial infarction and the underlying mechanism. Phytomedicine. 2019;57:255–261. doi:10.1016/j.phymed.2018.12.04030797987
  • Sotoudeh AnvariM, KarimiM, ShafieeA, et al. Complementary diagnostic value of heart type fatty acid-binding protein in early detection of acute myocardial infarction. Crit Pathw Cardiol. 2018;17(1):43–46. doi:10.1097/HPC.000000000000010729432376
  • BenfattiRA, ManzanoFM, PontesJC, et al. Analysis of left ventricular function in patients with heart failure undergoing cardiac resynchronization. Rev Bras Cir Cardiovasc. 2013;28(1):69–75. doi:10.5935/1678-9741.2013001123739935
  • DingY, WangL, ZhaoQ, et al. MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-kB signaling pathway. Int J Mol Med. 2019;43(2):779–790. doi:10.3892/ijmm.2018.403330569118
  • YuanP, ZhengX, LiM, et al. Two sulfur glycoside compounds isolated from Lepidium apetalum Willd protect NRK52e cells against hypertonic-induced adhesion and inflammation by suppressing the MAPK signaling pathway and RAAS. Molecules. 2017;22:1956. doi:10.3390/molecules22111956
  • XiaojingC, YanfangL, YanqingG, et al. Thymopentin improves cardiac function in older patients with chronic heart failure. Anatol J Cardiol. 2017;17(1):24–30. doi:10.14744/AnatolJCardiol.2016.669227564775
  • VeneroJV, DoyleM, ShahM, et al. Mid wall fibrosis on CMR with late gadolinium enhancement may predict prognosis for LVAD and transplantation risk in patients with newly diagnosed dilated cardiomyopathy-preliminary observations from a high-volume transplant centre. ESC Heart Fail. 2015;2(4):150–159. doi:10.1002/ehf2.12041
  • DuanF, QiZ, LiuS, et al. Effectiveness of bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: an echocardiographic study of left ventricular remodeling. Med Ultrason. 2015;17(2):160–166. doi:10.11152/mu.2013.2066.172.effbm26052565
  • KalayN, OzdogruI, CetinkayaY, et al. Cardiovascular effects of carbon monoxide poisoning. Am J Cardiol. 2007;99(3):322–324. doi:10.1016/j.amjcard.2006.08.03017261390
  • YangRH, SongZX, WuSQ, et al. Toll-like receptor 4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is associated with autophagy after myocardial infarction in a mouse model. Atherosclerosis. 2018;279:23–31. doi:10.1016/j.atherosclerosis.2018.10.018.30399463
  • MairJ, Hammerer-LercherA, PuschendorfB. The impact of cardiac natriuretic peptide determination on the diagnosis and management of heart failure. Clin Chem Lab Med. 2001;39(7):88–571. doi:10.1515/CCLM.2001.093
  • HayakawaH, KomadaY, HirayamaM, et al. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol. 2001;37(1):4–9. doi:10.1002/mpo.1155.11466716
  • RubattuS, ForteM, MarchittiS, et al. Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development. Int J Mol Sci. 2019;20(4):12. doi:10.3390/ijms20040798
  • Salisbury-RufCT, BertramCC, VergeadeA, et al. Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study. Elife. 2018:7. doi: 10.7554/eLife.40907.
  • WangXT, WuXD, LuYX, et al. Egr-1 is involved in coronary microembolization-induced myocardial injury via Bim/Beclin-1 pathway-mediated autophagy inhibition and apoptosis activation. Aging. 2018;10(11):3136–3147. doi:10.18632/aging.10161630391937
  • YuL, DuanY, ZhaoZ, et al. Hydroxysafflor yellow A (HSYA) improves learning and memory in cerebral ischemia reperfusion-injured rats via recovering synaptic plasticity in the hippocampus. Front Cell Neurosci. 2018;12:371. doi:10.3389/fncel.2018.0037130405354
  • ChimentiMS, SunziniF, FiorucciL, et al. Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front Immunol. 2018;9:2363. doi:10.3389/fimmu.2018.0236330429845
  • XuT, DingW, AoX, et al. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol. 2019;20:414–426. doi:10.1016/j.redox.2018.10.02330415165
  • GelinasR, MailleuxF, DontaineJ, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun. 2018;9(1):374. doi:10.1038/s41467-017-02795-429371602
  • YaoY, LuQ, HuZ, et al. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun. 2017;8(1):133. doi:10.1038/s41467-017-00171-w.28743963
  • ZhangZ, NianQ, ChenG, et al. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-Regulated inflammatory responses and apoptosis. Oxid Med Cell Longev. 2020;2020:13. doi:10.1155/2020/1854206
  • Romero-BecerraR, SantamansAM, FolgueiraC, SabioG. p38 MAPK pathway in the heart: new insights in health and disease. Int J Mol Sci. 2020;21:19. doi:10.3390/ijms21197412
  • NishidaK, YamaguchiO, HirotaniS, et al. p38α mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol. 2004;24:10611–10620. doi:10.1128/MCB.24.24.10611-10620.200415572667
  • DornGW, MolkentinJD. Manipulating cardiac contractility in heart failure: data from mice and men. Circulation. 2004;109(2):150–158. doi:10.1161/01.CIR.0000111581.15521.F514734503
  • YoshidaT, DasNA, CarpenterAJ, et al. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal. 2020;73:109690. doi:10.1016/j.cellsig.2020.109690.32553549
  • BurlacuA. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med. 2003;7(3):57–249. doi:10.1111/j.1582-4934.2003.tb00225.x12767262
  • HaoXL, KangY, LiJK, et al. Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells. Mol Med Rep. 2016;14(1):399–405. doi:10.3892/mmr.2016.5235.27176644
  • YouleRJ, StrasserA. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59. doi:10.1038/nrm230818097445
  • HirschhäuserC, SydykovA, WolfA, et al. Lack of contribution of p66shc to pressure overload-induced right heart hypertrophy. Int J Mol Sci. 2020;21:24. doi:10.3390/ijms21249339.
  • CarrHS, WingeDR. Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res. 2003;36(5):309–316. doi:10.1021/ar020080712755640
  • BahramiH, DaryaniNE, MirmomenS, et al. Clinical and histological features of nonalcoholic steatohepatitis in Iranian patients. BMC Gastroenterol. 2003;3:27. doi:10.1186/1471-230X-3-2714561231
  • GramlichT, KleinerDE, McCulloughAJ, et al. Pathologic features associated with fibrosis in nonalcoholic fatty liver disease. Hum Pathol. 2004;35(2):196–199. doi:10.1016/j.humpath.2003.09.01814991537
  • ZhaoTV, LiY, LiuXL, et al. ATP release drives heightened response and autoimmunity in hypertension. Sci Immunol. 2019;4:36. doi:10.1126/sciimmunol.aau6426.
  • HardieDG, RossFA, HawleySA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–262. doi:10.1038/nrm331122436748
  • TianZH, WengJT, ShihLJ, et al. Arecoline inhibits the growth of 3T3-L1 preadipocytes via AMP-activated protein kinase and reactive oxygen species pathways. PLoS One. 2018;13(7):e0200508. doi:10.1371/journal.pone.0200508.30011295
  • CantoC, AuwerxJ. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105. doi:10.1097/MOL.0b013e328328d0a419276888
  • CantoC, Gerhart-HinesZ, FeigeJN, et al. AMPK regulates energy expenditure by modulating NAD (+) metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–1060. doi:10.1038/nature0781319262508
  • LiuMH, LinXL, GuoDM, et al. Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol Med Rep. 2016;13(2):1281–1286. doi:10.3892/mmr.2015.466526675978