130
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Curcumol Ameliorates Lung Inflammation and Airway Remodeling via Inhibiting the Abnormal Activation of the Wnt/β-Catenin Pathway in Chronic Asthmatic Mice

, , , , , , & show all
Pages 2641-2651 | Published online: 21 Jun 2021

References

  • QuirtJ, HildebrandKJ, MazzaJ, NoyaF, KimH. Asthma. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):50. doi:10.1186/s13223-018-0279-030275843
  • PalumboML, ProchnikA, WaldMR, GenaroAM. Chronic stress and glucocorticoid receptor resistance in asthma. Clin Ther. 2020;42(6):993–1006. doi:10.1016/j.clinthera.2020.03.00232224031
  • BarriosJ, AiX. Neurotrophins in asthma. Curr Allergy Asthma Rep. 2018;18(2):10. doi:10.1007/s11882-018-0765-y29453651
  • WanJ, HuangL, JiX, et al. HMGB1-induced ILC2s activate dendritic cells by producing IL-9 in asthmatic mouse model. Cell Immunol. 2020;352:104085. doi:10.1016/j.cellimm.2020.10408532201004
  • BaanEJ, van den AkkerELT, EngelkesM, et al. Hair cortisol and inhaled corticosteroid use in asthmatic children. Pediatr Pulmonol. 2020;55(2):316–321. doi:10.1002/ppul.2455131651095
  • O’ByrnePM. Inhaled corticosteroids/formoterol as a reliever in mild asthma. Respirology. 2020;25(8):795–796. doi:10.1111/resp.1381332232892
  • BarnesPJ. Cellular and molecular mechanisms of asthma and COPD. Clinical Sci. 2017;131(13):1541–1558. doi:10.1042/cs20160487
  • ChenYF, HuangG, WangYM, et al. Exchange protein directly activated by cAMP (Epac) protects against airway inflammation and airway remodeling in asthmatic mice. Respir Res. 2019;20(1):285. doi:10.1186/s12931-019-1260-231852500
  • LouL, TianM, ChangJ, LiF, ZhangG. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7. Biomed Pharmacother. 2020;122:109692. doi:10.1016/j.biopha.2019.10969231918268
  • YangYG, TianWM, ZhangH, LiM, ShangYX. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med. 2013;6(5):1251–1258. doi:10.3892/etm.2013.128424223654
  • ChenX, ZongC, GaoY, et al. Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells. Eur J Pharmacol. 2014;723:339–345. doi:10.1016/j.ejphar.2013.11.00724269960
  • WeiW, RasulA, SadiqaA, et al. Curcumol: from plant roots to cancer roots. Int J Biol Sci. 2019;15(8):1600–1609. doi:10.7150/ijbs.3471631360103
  • CaiF, ChenM, ZhaD, et al. Curcumol potentiates celecoxib-induced growth inhibition and apoptosis in human non-small cell lung cancer. Oncotarget. 2017;8(70):115526–115545. doi:10.18632/oncotarget.2330829383179
  • PengZ, ZhouW, ZhangC, LiuH, ZhangY. Curcumol controls choriocarcinoma stem-like cells self-renewal via repression of DNA Methyltransferase (DNMT)- and Histone Deacetylase (HDAC)-mediated epigenetic regulation. Med Sci Monitor. 2018;24:461–472. doi:10.12659/msm.908430
  • LiG, LinJ, PengY, et al. Curcumol may reverse early and advanced liver fibrogenesis through downregulating the uPA/uPAR pathway. Phytotherapy Res. 2020;34(6):1421–1435. doi:10.1002/ptr.6616
  • WangJ, LiXM, BaiZ, ChiBX, WeiY, ChenX. Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/ GSK3β/cyclin D1 pathway. J Ethnopharmacol. 2018;210:1–9. doi:10.1016/j.jep.2017.06.03728684297
  • YanD, DengS, GanW, LiS, LiY. Curcumol attenuates epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via TGF-β1. Mol Med Rep. 2018;17(6):7513–7520. doi:10.3892/mmr.2018.881729620189
  • ChenN, WangJ. Wnt/β-Catenin signaling and obesity. Front Physiol. 2018;9:792. doi:10.3389/fphys.2018.0079230065654
  • LorenzonA, CaloreM, PoloniG, De WindtLJ, BraghettaP, RampazzoA. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget. 2017;8(36):60640–60655. doi:10.18632/oncotarget.1745728948000
  • NguyenVHL, HoughR, BernaudoS, PengC. Wnt/β-catenin signalling in ovarian cancer: insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 2019;12(1):122. doi:10.1186/s13048-019-0596-z31829231
  • Silva-GarcíaO, Valdez-AlarcónJJ, Baizabal-AguirreVM. Wnt/β-Catenin signaling as a molecular target by pathogenic bacteria. Front Immunol. 2019;10:2135. doi:10.3389/fimmu.2019.0213531611869
  • MacDonaldBT, TamaiK, HeX. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. doi:10.1016/j.devcel.2009.06.01619619488
  • MacdonaldBT, SemenovMV, HeX. SnapShot: wnt/beta-catenin signaling. Cell. 2007;131(6):1204. doi:10.1016/j.cell.2007.11.03618083108
  • HuangY, WangL, JiaXX, LinXX, ZhangWX. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/beta-catenin signaling pathway. Int Immunopharmacol. 2019;68:88–94. doi:10.1016/j.intimp.2018.12.06130616171
  • KwakHJ, ParkDW, SeoJY, et al. The Wnt/beta-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Exp Mol Med. 2015;47:e198. doi:10.1038/emm.2015.9126655831
  • LiS, ZhouG, LiuW, YeJ, YuanF, ZhangZ. Curcumol inhibits lung adenocarcinoma growth and metastasis via inactivation of PI3K/AKT and Wnt/ß-catenin pathway. Oncol Res. 2020. doi:10.3727/096504020x15917007265498
  • YaoL, ZhaoH, TangH, et al. Blockade of beta-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy. 2017;72(4):579–589. doi:10.1111/all.1304527624805
  • VasconcelosJF, TeixeiraMM, Barbosa-FilhoJM, et al. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. Int Immunopharmacol. 2008;8(9):1216–1221. doi:10.1016/j.intimp.2008.04.01118602067
  • GonY, HashimotoS. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67(1):12–17. doi:10.1016/j.alit.2017.08.01128941636
  • WangH, LiuY, ShiJ, ChengZ. ORMDL3 knockdown in the lungs alleviates airway inflammation and airway remodeling in asthmatic mice via JNK1/2-MMP-9 pathway. Biochem Biophys Res Commun. 2019;516(3):739–746. doi:10.1016/j.bbrc.2019.06.12231255288
  • EzzatDA, MorganDS, MohamedRA, MohamedAF. Genetic association of interleukin 18 (−607C/A, rs1946518) single nucleotide polymorphism with asthmatic children, disease severity and total IgE serum level. Central Eur j Immunol. 2019;44(3):285–291. doi:10.5114/ceji.2019.89603
  • GadeEJ, ThomsenSF, LindenbergS, MacklonNS, BackerV. Lower values of VEGF in endometrial secretion are a possible cause of subfertility in non-atopic asthmatic patients. J Asthma. 2015;52(4):336–342. doi:10.3109/02770903.2014.96691525243322
  • WangL, ZhangYL, WangXF, SongZ, WangW. [Expression and significance of mTOR/4EBP1/HIF-1alpha/VEGF signaling pathway in lung tissues of asthmatic mice]. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19(1):104–110.28100332
  • KeskinO, OzkarsMY, GogebakanB, KucukosmanogluE, KeskinM, ExhaledBH. TGF-beta1 levels before and after an exercise challenge in asthmatic and healthy children, and during exacerbation. J Asthma. 2019;1–10. doi:10.1080/02770903.2019.1689261
  • LvX, LiY, GongQ, JiangZ. TGF-beta1 induces airway smooth muscle cell proliferation and remodeling in asthmatic mice by up-regulating miR-181a and suppressing PTEN. Int J Clin Exp Pathol. 2019;12(1):173–181.31933731
  • XieYH, LiXP, XuZX, QianP, LiXL, WangYQ. Effect of compound Maqin decoction on TGF-beta1/Smad proteins and IL-10 and IL-17 content in lung tissue of asthmatic rats. Genetics Mol Res. 2016;15(3). doi:10.4238/gmr.15037539
  • LiuLL, ZhangY, ZhangXF, LiFH. Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-kappaB/iNOS-mediated inflammatory responses in asthmatic mice model. Korean j Physiol Pharmacol. 2018;22(5):481–491. doi:10.4196/kjpp.2018.22.5.48130181695