1,210
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Synthesis of Michael Adducts as Key Building Blocks for Potential Analgesic Drugs: In vitro, in vivo and in silico Explorations

, , , ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 1299-1313 | Published online: 23 Mar 2021

References

  • CraigAD, SorkinLS Pain and analgesia. e LS. 2001 530.
  • JanMS, AhmadS, HussainF, et al. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2, 5-dione derivatives as multitarget anti-inflammatory agents. Eur J Med Chem. 2020;186:111863. doi:10.1016/j.ejmech.2019.11186331740050
  • CrombezG, EcclestonC, BaeyensF, EelenP. The disruptive nature of pain: an experimental investigation. Behav Res Ther. 1996;34(11–12):911–918. doi:10.1016/S0005-7967(96)00058-78990542
  • FieldsHL. Analgesic drugs. Pain. 1987;1:272.
  • AltmanR, BoschB, BruneK, PatrignaniP, YoungC. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75(8):859–877. doi:10.1007/s40265-015-0392-z25963327
  • PetrovskaBB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1–5. doi:10.4103/0973-7847.9584922654398
  • TallimaH, El RidiR. Arachidonic acid: physiological roles and potential health benefits–a review. J Adv Res. 2018;11:33–41. doi:10.1016/j.jare.2017.11.00430034874
  • YadavDK, KumarS, MisraS, et al. Molecular insights into the interaction of RONS and Thieno [3, 2-c] pyran analogs with SIRT6/COX-2: a molecular dynamics study. Sci Rep. 2018;8(1):1–6. doi:10.1038/s41598-018-22972-929311619
  • MeenaA, YadavDK, SrivastavaA, KhanF, ChandaD, ChattopadhyaySK. In silico exploration of anti-inflammatory activity of natural coumarinolignoids. Chem Biol Drug Des. 2011;78(4):567–579. doi:10.1111/j.1747-0285.2011.01173.x21736704
  • YadavDK, SharmaP, MisraS, et al. Studies of the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking. Arch Pharm Res. 2018;41(12):1178–1189. doi:10.1007/s12272-017-0945-728822076
  • Martel-PelletierJ, LajeunesseD, ReboulP, PelletierJP. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis. 2003;62(6):501–509. doi:10.1136/ard.62.6.50112759283
  • SadiqA, NugentTC. Catalytic access to succinimide products containing stereogenic quaternary carbons. ChemistrySelect. 2020;5(38):11934–11938. doi:10.1002/slct.202003664
  • NugentTC, NegruDE, El-ShazlyM, et al. Sequential reductive amination-hydrogenolysis: a one-pot synthesis of challenging chiral primary amines. Adv Synth Catal. 2011;353(11–12):2085–2092. doi:10.1002/adsc.201100250
  • NugentTC, BibiA, SadiqA, ShoaibM, UmarMN, TehraniFN. Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries. Org Biomol Chem. 2012;10(46):9287–9294. doi:10.1039/c2ob26382c23104278
  • AgranatI, CanerH, CaldwellJ. Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov. 2002;1(10):753–768. doi:10.1038/nrd91512360254
  • AriensEJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol. 1984;26(6):663–668. doi:10.1007/BF005419226092093
  • YadavDK, KumarS, SaloniHS, et al. Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer. Drug Des Devel Ther. 2017;11:1859. doi:10.2147/DDDT.S130601
  • Kumar YadavD, DhawanS, ChauhanA, et al. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr Drug Targets. 2014;15(8):753–761. doi:10.2174/138945011566614063010271124975562
  • YadavDK, KhanF, NegiAS. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J Mol Model. 2012;18(6):2513–2525. doi:10.1007/s00894-011-1265-322038459
  • YadavDK, KhanF. QSAR, docking and ADMET studies of camptothecin derivatives as inhibitors of DNA topoisomerase‐I. J Chemom. 2013;27(1–2):21–33. doi:10.1002/cem.2488
  • NugentTC, SadiqA, BibiA, et al. Noncovalent bifunctional organocatalysts: powerful tools for contiguous quaternary‐tertiary stereogenic carbon formation, scope, and origin of enantioselectivity. Chem Eur J. 2012;18(13):4088–4098. doi:10.1002/chem.20110300522354747
  • AhmadA, UllahF, SadiqA, et al. Comparative cholinesterase, α-glucosidase inhibitory, antioxidant, molecular docking, and kinetic studies on potent succinimide derivatives. Drug Des Devel Ther. 2020;14:2165. doi:10.2147/DDDT.S237420
  • BibiA, ShahT, SadiqA, KhalidN, UllahF, IqbalA. L-isoleucine-catalyzed michael synthesis of N-alkylsuccinimide derivatives and their antioxidant activity assessment. Russian J Organic Chem. 2019;55(11):1749–1754. doi:10.1134/S1070428019110174
  • AhmadA, UllahF, SadiqA, et al. Pharmacological evaluation of aldehydic-pyrrolidinedione against HCT-116, MDA-MB231, NIH/3T3, MCF-7 cancer cell lines, antioxidant and enzyme inhibition studies. Drug Des Devel Ther. 2019;13:4185. doi:10.2147/DDDT.S226080
  • HussainF, KhanZ, JanMS, et al. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2, 5-dione and thiazolidine-2, 4-dione derivatives. Bioorg Chem. 2019;91:103128. doi:10.1016/j.bioorg.2019.10312831369977
  • JanMS, ShahidM, AhmadS, et al. Synthesis of pyrrolidine-2, 5-dione based anti-inflammatory drug: in vitro COX-2, 5-LOX inhibition and in vivo anti-inflammatory studies. Latin Am J Pharm. 2019;38(11):2287–2294.
  • SadiqA, MahmoodF, UllahF, et al. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J. 2015;9(1):31. doi:10.1186/s13065-015-0107-226064188
  • MunirA, KhushalA, SaeedK, et al. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg Chem. 2020;104:104168. doi:10.1016/j.bioorg.2020.10416832947133
  • AhmadS, IftikharF, UllahF, SadiqA, RashidU. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg Chem. 2016;69:91–101. doi:10.1016/j.bioorg.2016.10.00227750058
  • SarfrazM, SultanaN, RashidU, AkramMS, SadiqA, TariqMI. Synthesis, biological evaluation and docking studies of 2, 3-dihydroquinazolin-4 (1H)-one derivatives as inhibitors of cholinesterases. Bioorg Chem. 2017;70:237–244. doi:10.1016/j.bioorg.2017.01.00428126287
  • BibiM, QureshiNA, SadiqA, et al. Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2, 4-diaminopyrimidine-based analogues for the selective inhibition of L. major Dihydrofolate reductase. Eur J Med Chem. 2020;112986. doi:10.1016/j.ejmech.2020.11298633187806
  • ShahSM, UllahF, ShahSM, ZahoorM, SadiqA. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium Stocksianum bioss collected from the North West of Pakistan. BMC Complement Altern Med. 2012;12(1):244. doi:10.1186/1472-6882-12-24423217213
  • SadiqA, ZebA, UllahF, et al. Chemical characterization, analgesic, antioxidant, and anticholinesterase potentials of essential oils from Isodon rugosus Wall. Front Pharmacol. 2018;9:623. doi:10.3389/fphar.2018.0062329950997
  • ShahSM, SadiqA, ShahSM, UllahF. Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum methanolic extract in different animal models. BMC Complement Altern Med. 2014;14(1):181. doi:10.1186/1472-6882-14-18124893601
  • RahimH, SadiqA, KhanS, et al. Aceclofenac nanocrystals with enhanced in vitro, in vivo performance: formulation optimization, characterization, analgesic and acute toxicity studies. Drug Des Devel Ther. 2017;11:2443. doi:10.2147/DDDT.S140626
  • ZebA, AhmadS, UllahF, AyazM, SadiqA. Anti-nociceptive activity of ethnomedicinally important analgesic plant Isodon rugosus Wall. ex Benth: mechanistic study and identifications of bioactive compounds. Front Pharmacol. 2016;7:200. doi:10.3389/fphar.2016.0020027458379
  • UnderwoodW, AnthonyR. AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved on March. 2013;30(2020):2020–2021.
  • AhmadG, RasoolN, RizwanK, et al. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl) thiophene-2-carboxamide analogs. Bioorg Chem. 2019;92:103216. doi:10.1016/j.bioorg.2019.10321631491567
  • SultanaN, SarfrazM, TanoliST, et al. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2, 3-dihydroquinazolin-4 (1H)-one as inhibitors of cholinesterases. Bioorg Chem. 2017;72:256–267. doi:10.1016/j.bioorg.2017.04.00928495556
  • CraigAD. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003;26(6):303–307. doi:10.1016/S0166-2236(03)00123-112798599
  • MiljanichG, RauckR, SaulinoM. Spinal mechanisms of pain and analgesia. Pain Pract. 2013;13(2):114–130. doi:10.1111/j.1533-2500.2012.00564.x22631599
  • SessleBJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11(1):57–91. doi:10.1177/1045441100011001040110682901
  • MoertelCG, AhmannDL, TaylorWF, SchwartauN. A comparative evaluation of marketed analgesic drugs. N Engl J Med. 1972;286(15):813–815. doi:10.1056/NEJM1972041328615044110992
  • TjølsenA, BergeOG, HunskaarS, RoslandJH, HoleK. The formalin test: an evaluation of the method. Pain. 1992;51(1):5–17. doi:10.1016/0304-3959(92)90003-T1454405
  • SjöbergP, JonesDR. Non-Clinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals: ICH M3 and M3 (R2). In Global Approach in Safety Testing. New York, NY: Springer; 2013:pp. 299–309.
  • MahmoodF, JanMS, AhmadS, et al. Ethyl 3-oxo-2-(2, 5-dioxopyrrolidin-3-yl) butanoate derivatives: anthelmintic and cytotoxic potentials, antimicrobial, and docking studies. Front Chem. 2017;5:119. doi:10.3389/fchem.2017.0011929312926
  • PatilMM, RajputSS. Succinimides: synthesis, reaction, and biological activity. Int J Pharm Pharm Sci. 2014;6(11):8–14.
  • YadavDK, RaiR, KumarN, SinghS, MisraS, SharmaP. “New arylated benzo [h] quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage”. Sci Rep. 2016;6(1):1–13. doi:10.1038/srep3812828442746
  • GaurR, YadavDK, KumarS, DarokarMP, KhanF, BhakuniRS. Molecular modeling based synthesis and evaluation of in vitro anticancer activity of indolyl chalcones. Curr Top Med Chem. 2015;15(11):1003–1012. doi:10.2174/156802661566615031722205925860176
  • Sathish KumarB, KumarA, SinghJ, et al. Synthesis of 2-alkoxy and 2-benzyloxy analogues of estradiol as anti-breast cancer agents through microtubule stabilization. Eur J Med Chem. 2014;86:740–751. doi:10.1016/j.ejmech.2014.09.03325238172