492
Views
26
CrossRef citations to date
0
Altmetric
Original Research

Development and Characterization of PLGA Nanoparticle-Laden Hydrogels for Sustained Ocular Delivery of Norfloxacin in the Treatment of Pseudomonas Keratitis: An Experimental Study

, , , ORCID Icon, & ORCID Icon
Pages 399-418 | Published online: 05 Feb 2021

References

  • JumelleC, GholizadehS, AnnabiN, DanaR. Advances and limitations of drug delivery systems formulated as eye drops. J Control Rel. 2020;321:1–22. doi:10.1016/j.jconrel.2020.01.057
  • ZhangW, PrausnitzMR, EdwardsA. Model of transient drug diffusion across cornea. J Control Rel. 2004;99:241–258. doi:10.1016/j.jconrel.2004.07.001
  • AgarwalP, SchererD, GüntherB, RupenthalID. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm. 2018;538(1–2):119–129. doi:10.1016/j.ijpharm.2018.01.01929339249
  • LakhundiS, SiddiquiR, KhanNA. Pathogenesis of microbial keratitis. Microb Pathog. 2017;104:97–109.27998732
  • AraújoJ, VegaE, LopesC, EgeaMA, GarciaML, SoutoEB. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces. 2009;72(1):48–56. doi:10.1016/j.colsurfb.2009.03.02819403277
  • CañadasC, AlvaradoH, CalpenaAC, et al. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int J Pharm. 2016;511(2):719–727. doi:10.1016/j.ijpharm.2016.07.05527480398
  • OnlenY, TamerC, OksuzH, et al. Comparative trial of different anti-bacterial combinations with propolis and ciprofloxacin on Pseudomonas keratitis in rabbits. Microbiol Res. 2007;162(1):62–68. doi:10.1016/j.micres.2006.07.00416904302
  • ConstantinouM, DaniellM, SnibsonGR, VuHT, TaylorHR. Clinical efficacy of moxifloxacin in the treatment of bacterial keratitis: a randomized clinical trial. Ophthalmology. 2007;114(9):1622–1629. doi:10.1016/j.ophtha.2006.12.01117822972
  • Ubani-UkomaU, GibsonD, SchultzG, SilvaBO, ChauhanA. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm. 2019;565:499–508. doi:10.1016/j.ijpharm.2019.05.03131085257
  • GoldsteinEJ. Norfloxacin, a fluoroquinolone antibacterial agent. Classification, mechanism of action, and in vitro activity. Am J Med. 1987;82(6):3–17. doi:10.1016/0002-9343(87)90612-7
  • LinHH, KoSM, HsuLR, TsaiYH. The preparation of norfloxacin-loaded liposomes and their in-vitro evaluation in pig’s eye. J Pharm Pharmacol. 1996;48(8):801–805. doi:10.1111/j.2042-7158.1996.tb03977.x8887728
  • KalyanwatR, ShrivastavaB, PathakK. Bioadhesive ocular inserts of Norfloxacin for the treatment of ocular E. coli infection: development and in vitro evaluation. Pharm Chem J. 2017;4(4):47–56.
  • LiuS, DozoisMD, ChangCN, et al. Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm. 2016;13(9):2897–2905. doi:10.1021/acs.molpharmaceut.6b0044527482595
  • ÖztürkAA, YenilmezE, ÖzardaMG. Clarithromycin-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers. 2019;11(10):1632. doi:10.3390/polym11101632
  • MundargiRC, BabuVR, RangaswamyV, PatelP, AminabhaviTM. Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives. J Control Rel. 2008;125(3):193–209. doi:10.1016/j.jconrel.2007.09.013
  • SilvaAT, CardosoBC, SilvaME, et al. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J Biomater Nanobiotechnol. 2015;6(1):8–19. doi:10.4236/jbnb.2015.61002
  • AlkholiefM, AlbasitH, AlhowyanA, et al. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm J. 2019;27(2):293–302. doi:10.1016/j.jsps.2018.11.01130766442
  • AllisonSD. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic) acid microparticle drug delivery systems. J Pharm Sci. 2008;97(6):2022–2035. doi:10.1002/jps.2112417828755
  • ZhangL, Pornpatt AnanangkulD, HuCHJ, et al. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17:585–594. doi:10.2174/09298671079041629020015030
  • AhmedTA, AljaeidBM. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine. 2017;12:1863–1875. doi:10.2147/IJN.S13185028331311
  • Gonzalez-PizarroR, Carvajal-VidalP, Halbault BellowaL, CalpenaAC, EspinaM, GarcíaML. In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions. Colloids Surf B Biointerfaces. 2019;175:365–374. doi:10.1016/j.colsurfb.2018.11.06530554015
  • AbregoG, AlvaradoH, SoutoEB, et al. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm. 2015;95(Pt B):261–270. doi:10.1016/j.ejpb.2015.01.02625681744
  • ParkMH, JunHS, JeonJW, et al. Preparation and characterization of bee venom loaded PLGA particles for sustained release. Pharm Dev Technol. 2018;23(9):857–864. doi:10.1080/10837450.2016.126441527881046
  • Abd-ElbaryA, MakkyAM, TadrosMI, Alaa-EldinAA. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers. Eur J Pharm Sci. 2016;82:31–44. doi:10.1016/j.ejps.2015.11.00626546947
  • YeapSP, LimJ, NgangHP, OoiBS, AhmadAL. Role of particle-particle interaction towards effective interpretation of z-average and particle size distributions from Dynamic Light Scattering (DLS) analysis. J Nanosci Nanotechnol. 2018;18(10):6957–6964. doi:10.1166/jnn.2018.1545829954516
  • TayelSA, El-NabarawiMA, TadrosMI, Abd-ElsalamWH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305. doi:10.1016/j.ijpharm.2012.12.04923333217
  • YehiaSA, El-RidiMS, TadrosMI, El-SherifNG. Phenylalanine-free taste-masked orodispersible tablets of fexofenadine hydrochloride: development, in vitro evaluation and in vivo estimation of the drug pharmacokinetics in healthy human volunteers. Pharm Dev Technol. 2015;20(5):528–539. doi:10.3109/10837450.2014.88294224490806
  • SahAK, SureshPK, VermaVK. PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artif Cells Nanomed Biotechnol. 2017;45(6):1156–1164. doi:10.1080/21691401.2016.1203794
  • YadavM, AhujaM. Preparation and evaluation of nanoparticles of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohydr Polym. 2010;81:871–877. doi:10.1016/j.carbpol.2010.03.065
  • MontiD, ChetoniP, BurgalassiS, NajarroM, SaettoneMF. Increased corneal hydration induced by potential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and by desiccation. Int J Pharm. 2002;232(1–2):139–147. doi:10.1016/S0378-5173(01)00907-311790497
  • MazyedEA, AbdelazizAE. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics. 2020;12(5):465. doi:10.3390/pharmaceutics12050465
  • AbdellatifMM, KhalilIA, KhalilMAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation. Int J Pharm. 2017;527(1–2):1–11. doi:10.1016/j.ijpharm.2017.05.02928522423
  • AlmutairiMS, AliM. Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat Prod Res. 2015;29(13):1271–1275. doi:10.1080/14786419.2014.99234525537113
  • SolimanSM, Abdel MalakNS, El-GazayerlyON, Abdel RehimAA. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: in vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov Ther. 2010;4(6):459–471.22491312
  • CullingCF. Handbook of Histopathological and Histochemical Techniques: Including Museum Techniques. 3rd ed. Butterworth; 1974.
  • KimBK, HwangSJ, ParkJB, ParkHJ. Preparation and characterization of drug-loaded polymethacrylate microspheres by an emulsion solvent evaporation method. J Microencapsul. 2002;19(6):811–822. doi:10.1080/026520402100002277012569029
  • O’NeilMJ, ed. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, NJ: Merck and Co., Inc; 2006.
  • MengFT, MaGH, LiuYD, QiuW, SuZG. Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids Surf B Biointerfaces. 2004;33(3–4):177–183. doi:10.1016/j.colsurfb.2003.10.003
  • WangH, JiaY, HuW, JiangH, ZhangJ, ZhangL. Effect of preparation conditions on the size and encapsulation properties of mPEG-PLGA nanoparticles simultaneously loaded with vincristine sulfate and curcumin. Pharm Dev Technol. 2013;18(3):694–700. doi:10.3109/10837450.2012.69626722676257
  • MobarakDH, SalahS, ElkheshenSA. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol. 2014;19(7):891–900. doi:10.3109/10837450.2013.83629324032531
  • AlexanderDLJ, TropshaA, WinklerDA. Beware of R(2): simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model. 2015;55(7):1316–1322. doi:10.1021/acs.jcim.5b0020626099013
  • SudhakarB, KrishnaMC, MurthyKV. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: pEGylation, lyophilization and pharmacokinetic studies. Appl Nanosci. 2016;6(1):43–60. doi:10.1007/s13204-015-0408-8
  • TadrosMI, Al-MahallawiAM. Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: development, preliminary safety evaluations and preclinical pharmacokinetic studies. Int J Pharm. 2015;493(1–2):439–450. doi:10.1016/j.ijpharm.2015.08.01126253380
  • ReischA, RunserA, ArntzY, MélyY, KlymchenkoAS. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles. ACS Nano. 2015;9(5):5104. doi:10.1021/acsnano.5b0021425894117
  • HoaLT, ChiNT, NguyenLH, ChienDM. Preparation and characterization of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J Exp Nanosci. 2012;7(2):189–197. doi:10.1080/17458080.2010.515247
  • Al-MahallawiAM, AbdelbaryAA, AburahmaMH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1–2):329–340. doi:10.1016/j.ijpharm.2015.03.03325796122
  • KhalilRM, AbdelbaryGA, BashaM, AwadGEA, El-HashemyHA. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res. 2017;27(4):312–323. doi:10.1080/08982104.2016.119102227241274
  • KocbekP, ObermajerN, CegnarM, KosJ, KristlJ. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Rel. 2007;120(1–2):18–26. doi:10.1016/j.jconrel.2007.03.012
  • KedmiR, Ben-ArieN, PeerD. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867–6875. doi:10.1016/j.biomaterials.2010.05.02720541799
  • RoscaID, WatariF, UoM. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Rel. 2004;99(2):271–280. doi:10.1016/j.jconrel.2004.07.007
  • MotwaniSK, ChopraS, TalegaonkarS, KohliK, AhmadFJ, KharRK. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–525. doi:10.1016/j.ejpb.2007.09.00917983737
  • ZhangL, GuoJ, PengX, JinY. Preparation and release behavior of carboxymethylated chitosan/alginate microspheres encapsulating bovine serum albumin. J Appl Polym Sci. 2004;92(2):878–882. doi:10.1002/app.13708
  • MudgilM, PawarPK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm. 2013;81(2):591–606. doi:10.3797/scipharm.1204-1623833723
  • GuptaH, AqilM, KharRK, AliA, BhatnagarA, MittalG. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–333. doi:10.1016/j.nano.2009.10.00419857606
  • RaviS, PehKK, DarwisY, MurthyBK, SinghTR, MallikarjunC. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J Pharm Sci. 2008;70(3):303–309. doi:10.4103/0250-474X.4297820046737
  • KataraR, SachdevaS, MajumdarDK. Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization. Drug Deliv Transl Res. 2017;7(5):632–641. doi:10.1007/s13346-017-0416-128812225
  • VegaE, GamisansF, GarcíaML, ChauvetA, LacouloncheF, EgeaMA. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97(12):5306–5317. doi:10.1002/jps.2138318425815
  • MalhotraS, KhareA, GroverK, SinghI, PawarP. Design and evaluation of voriconazole eye drops for the treatment of fungal keratitis. J Pharm. 2014;2014:490595.
  • SchoenwaldRD, HuangHS. Corneal penetration behaviour of b-blocking agents I: physicochemical factors. J Pharm Sci. 1983;72:1266–1272. doi:10.1002/jps.26007211086139471
  • SahooS, ChakrabortiC, MishraS, NandaU, NaikS. FTIR and XRD investigations of some fluoroquinolones. Int J Pharm Pharm Sci. 2011;3(3):165–170.
  • FuJ, DongXX, ZengZP, YinXB, LiFW, NiJ. Preparation and physicochemical characterization of T-OA PLGA microspheres. Chin J Nat Med. 2017;15(12):912–916. doi:10.1016/S1875-5364(18)30007-429329648
  • YadavKS, RajpurohitR, SharmaS. Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci. 2019;221:362–376. doi:10.1016/j.lfs.2019.02.02930797820
  • LynchCR, KondiahPPD, ChoonaraYE, Du ToitLC, AllyN, PillayV. Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol. 2020;8:228. doi:10.3389/fbioe.2020.0022832266248
  • DolzM, HerraezM, GonzálezF, SalesOD. Flow behaviour of Carbopol-940® hydrogels. The influence of concentration and agitation time. Pharmazie. 1998;53(2):126–130.
  • JoshiSC. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in ionic media including drug release. Materials (Basel). 2011;4(10):1861–1905. doi:10.3390/ma410186128824113
  • WangYY, HongCT, ChiuWT, FangJY. In vitro and in vivo evaluations of topically applied capsaicin and nonivamide from hydrogels. Int J Pharm. 2001;224:89–104. doi:10.1016/S0378-5173(01)00755-411472818
  • Hasan SathaliAA, SangeethaT. Formulation and evaluation of ocular niosomal in situ gel of levofloxacin hemihydrate. J Pharmacy Res. 2011;4:4331–4337.
  • Abdel-RashidRS, HelalDA, OmarMM, El SisiAM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine. 2019;14:2973–2983. doi:10.2147/IJN.S20189131118616
  • PanduranganDK, BodagalaP, PalanirajanVK, GovindarajS. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int J Pharm Investig. 2016;6(1):56–62. doi:10.4103/2230-973X.176488
  • PanyamJ, LabhasetwarV. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev. 2003;55(3):329–347. doi:10.1016/S0169-409X(02)00228-4
  • BeiselKW, HazlettLD, BerkRS. Dominant susceptibility effect on the murine corneal response to Pseudomonas aeruginosa. Proc Soc Exp Med. 1983;172:488–491. doi:10.3181/00379727-172-41592
  • HumeEB, DajcsJJ, MoreauJM, SloopGD, WillcoxMD, O’CallaghanRJ. Staphylococcus corneal virulence in a new topical model of infection. Investig Ophthalmol Vis Sci. 2001;42:2904–2908.11687535