255
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Predicting and Exploring the Mechanisms of Erzhi Pill in Prevention and Treatment of Osteoporosis Based on Network Pharmacology and Zebrafish Experiments

, , , , , & ORCID Icon show all
Pages 817-827 | Published online: 24 Feb 2021

References

  • ZengQ, LiN, WangQ, FengJ, SunD. The prevalence of osteoporosis in china, a nationwide, multicenter DXA survey. J Bone Miner Res. 2019;34(10):1789–1797. doi:10.1002/jbmr.375731067339
  • CurtisEM, MoonRJ, DennisonEM, HarveyNC, CooperC. Recent advances in the pathogenesis and treatment of osteoporosis. Clin Med. 2016;16(4):360–364. doi:10.7861/clinmedicine.16-4-360
  • TellaSH, GallagherJC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2014;142:155–170. doi:10.1016/j.jsbmb.2013.09.00824176761
  • CanoA, ChedrauiP, GoulisDG, LopesP, MishraG. Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide. Maturitas. 2018;107:7–12. doi:10.1016/j.maturitas.2017.10.00429169584
  • GeusensP, OatesM, MiyauchiA, AdachiJD, Lazaretti-CastroM. The effect of 1 year of romosozumab on the incidence of clinical vertebral fractures in postmenopausal women with osteoporosis: results from the FRAME study. JBMR Plus. 2019;3(10):e10211. doi:10.1002/jbm4.1021131687647
  • ZuoJY, ParkC, DoschakM, LöbenbergR. Are the release characteristics of erzhi pills in line with traditional Chinese medicine theory? A quantitative study. J Integr Med. 2020;19(1):50–55. doi:10.1016/j.joim.2020.10.00433162375
  • LiangW, LiX, LiG, HuL, DingS. Sirt1/Foxo axis plays a crucial role in the mechanisms of therapeutic effects of erzhi pill in ovariectomized rats. Evid Based Complement Alternat Med. 2018;2018:9210490. doi:10.1155/2018/921049030224934
  • YangY, NianH, TangX, WangX, LiuR. Effects of the combined Herba Epimedii and Fructus Ligustri Lucidi on bone turnover and TGF-β1/Smads pathway in GIOP rats. J Ethnopharmacol. 2017;201:91–99. doi:10.1016/j.jep.2017.02.03328254481
  • FuSF, ZhaoYQ, RenM, ZhangJH, WangYF. A randomized, double-blind, placebo-controlled trial of Chinese herbal medicine granules for the treatment of menopausal symptoms by stages. Menopause. 2016;23(3):311–323. doi:10.1097/GME.000000000000053426671188
  • LiX, LuX, FanD, LiL, LuC. Synergistic effects of erzhi pill combined with methotrexate on osteoblasts mediated via the Wnt1/LRP5/β-Catenin signaling pathway in collagen-induced arthritis rats. Front Pharmacol. 2020;11:228. doi:10.3389/fphar.2020.0022832218732
  • QinT, WuL, HuaQ, SongZ, PanY, LiuT. Prediction of the mechanisms of action of shenkang in chronic kidney disease: a network pharmacology study and experimental validation. J Ethnopharmacol. 2019;246:112128. doi:10.1016/j.jep.2019.11212831386888
  • LiY, LiR, ZengZ, LiS, LuoS. Prediction of the mechanisms of xiaoai jiedu recipe in the treatment of breast cancer: a comprehensive approach study with experimental validation. J Ethnopharmacol. 2020;252:112603. doi:10.1016/j.jep.2020.11260331981747
  • DeLaurierA, EamesBF, Blanco-SánchezB, PengG, HeX. Zebrafish sp7: EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis. 2010;48(8):505–511. doi:10.1002/dvg.2063920506187
  • KnopfF, HammondC, ChekuruA, KurthT, HansS. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell. 2011;20(5):713–724. doi:10.1016/j.devcel.2011.04.01421571227
  • RuJ, LiP, WangJ, ZhouW, LiB. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi:10.1186/1758-2946-6-1324735618
  • LuoS, ChenJ, ZhongZ, LvX, YangY. Salvianolic acid B stimulates osteogenesis in dexamethasone-treated zebrafish larvae. Acta Pharmacol Sin. 2016;37(10):1370–1380. doi:10.1038/aps.2016.6227569393
  • LuoS, YangY, ChenJ, ZhongZ, HuangH. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish. J Orthop Translat. 2016;4:35–45. doi:10.1016/j.jot.2015.07.00230035064
  • XiJC, ZangHY, GuoLX, XueHB, LiuXD. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. J Recept Signal Transduct Res. 2015;35(6):640–645. doi:10.3109/10799893.2015.104164726390889
  • ZhaoB. TNF and bone remodeling. Curr Osteoporos Rep. 2017;15(3):126–134. doi:10.1007/s11914-017-0358-z28477234
  • WeitzmannMN. Bone and the immune system. Toxicol Pathol. 2017;45(7):911–924. doi:10.1177/019262331773531629046115
  • ChenX, WangZ, DuanN, ZhuG, SchwarzEM, XieC. Osteoblast-osteoclast interactions. Connect Tissue Res. 2018;59(2):99–107. doi:10.1080/03008207.2017.129008528324674
  • ThouvereyC, CaverzasioJ. Focus on the p38 MAPK signaling pathway in bone development and maintenance. Bonekey Rep. 2015;4:711. doi:10.1038/bonekey.2015.8026131361
  • AsadipooyaK, UyEM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc. 2019;3(10):1799–1818. doi:10.1210/js.2019-0016031528827
  • ChoiEM. Apigenin increases osteoblastic differentiation and inhibits tumor necrosis factor-alpha-induced production of interleukin-6 and nitric oxide in osteoblastic MC3T3-E1 cells. Pharmazie. 2007;62(3):216–220.17416199
  • GotoT, HagiwaraK, ShiraiN, YoshidaK, HagiwaraH. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology. 2015;67(2):357–365. doi:10.1007/s10616-014-9694-324500394
  • JinX, SunJ, YuB, WangY, SunWJ. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation. Nutr Res. 2017;42:20–30. doi:10.1016/j.nutres.2017.04.00928633868
  • JingZ, WangC, YangQ, WeiX, JinY. Luteolin attenuates glucocorticoid-induced osteoporosis by regulating?ERK/Lrp-5/GSK-3?? Signaling pathway in vivo and in vitro. J Cell Physiol. 2019;234(4):4472–4490. doi:10.1002/jcp.2725230192012
  • KimTH, JungJW, HaBG, HongJM, ParkEK. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J Nutr Biochem. 2011;22(1):8–15. doi:10.1016/j.jnutbio.2009.11.00220233653
  • ChengM, LiangXH, WangQW, DengYT, ZhaoZX, LiuXY. Ursolic acid prevents retinoic acid-induced bone loss in rats. Chin J Integr Med. 2019;25(3):210–215. doi:10.1007/s11655-018-3050-y30159645
  • TanH, ZhaoC, ZhuQ, KatakuraY, TanakaH. Ursolic acid isolated from the leaves of loquat (eriobotrya japonica) inhibited osteoclast differentiation through targeting exportin 5. J Agric Food Chem. 2019;67(12):3333–3340. doi:10.1021/acs.jafc.8b0695430827108
  • ZhaoJ, WuJ, XuB, YuanZ, LengY. Kaempferol promotes bone formation in part via the mTOR signaling pathway. Mol Med Rep. 2019;20(6):5197–5207. doi:10.3892/mmr.2019.1074731638215
  • SharmaAR, NamJS. Kaempferol stimulates WNT/?-catenin signaling pathway to induce differentiation of osteoblasts. J Nutr Biochem. 2019;74:108228. doi:10.1016/j.jnutbio.2019.10822831678747
  • MarinucciL, BalloniS, FettucciariK, BodoM, TalesaVN, AntognelliC. Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H(2)O(2) and entailing glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: implication for smokers-related osteoporosis. Free Radic Biol Med. 2018;117:6–17. doi:10.1016/j.freeradbiomed.2018.01.01729355739
  • KimBS, KimSJ, KimHJ, LeeSJ, ParkYJ. Effects of nicotine on proliferation and osteoblast differentiation in human alveolar bone marrow-derived mesenchymal stem cells. Life Sci. 2012;90(3–4):109–115. doi:10.1016/j.lfs.2011.10.01922115820
  • ZhangJ, ChenF, YunF, ChenJ. Low level nicotine: a novel approach to reduce osteoporosis incidence. Med Hypotheses. 2010;74(6):1067–1068. doi:10.1016/j.mehy.2009.12.02420106602
  • WangD, LouX, JiangXM, YangC, LiuXL, ZhangN. Quercetin protects against inflammation, MMP2 activation and apoptosis induction in rat model of cardiopulmonary resuscitation through modulating Bmi1 expression. Mol Med Rep. 2018;18(1):610–616. doi:10.3892/mmr.2018.899429749525
  • YuanZ, MinJ, ZhaoY, ChengQ, WangK. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am J Transl Res. 2018;10(12):4313–4321.30662673
  • LiangW, LuoZ, GeS, LiM, DuJ. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol. 2011;670(1):317–324. doi:10.1016/j.ejphar.2011.08.01421914440
  • XingLZ, NiHJ, WangYL. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed Pharmacother. 2017;89:1136–1141. doi:10.1016/j.biopha.2017.02.07328314242
  • BarbazukWB, KorfI, KadaviC, HeyenJ, TateS. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000;10(9):1351–1358. doi:10.1101/gr.14470010984453
  • CarnovaliM, BanfiG, MariottiM. Zebrafish models of human skeletal disorders: embryo and adult swimming together. Biomed Res Int. 2019;2019:1253710. doi:10.1155/2019/125371031828085
  • AliS, ChampagneDL, SpainkHP, RichardsonMK. Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C Embryo Today. 2011;93(2):115–133. doi:10.1002/bdrc.2020621671352
  • BergenD, KagueE, HammondCL. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne). 2019;10:6. doi:10.3389/fendo.2019.0000630761080
  • Casado-D AzA, AnterJ, DoradoG, Quesada-GómezJM. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. J Nutr Biochem. 2016;32:151–162. doi:10.1016/j.jnutbio.2016.03.00527142748