355
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Nephroprotective Effect of Adropinin Against Streptozotocin-Induced Diabetic Nephropathy in Rats: Inflammatory Mechanism and YAP/TAZ Factor

, , &
Pages 589-600 | Published online: 16 Feb 2021

References

  • NasiryD, KhalatbaryAR, AhmadvandH, et al. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. BMC Complement Altern Med. 2017;17:476. doi:10.1186/s12906-017-1983-x.28969623
  • NasiryD, KhalatbaryAR, AhmadvandH, et al. Juglans regia L. Leaf extract attenuates diabetic nephropathy progression in experimental diabetes: an immunohistochemical study. Iran J Med Sci. 2019;44:44–52. doi:10.30476/ijms.2019.40624.30666075
  • NasiryD, KhalatbaryAR, AhmadvandH, et al. Therapeutic potential of Juglans regia L. Leaf extract against diabetic retinopathy in rat. Iran J Basic Med Sci. 2017;20:1275–1281. doi:10.22038/IJBMS.2017.9465.29299206
  • JavidanpourS, Fatemi TabtabaeiSR, SiahpooshA, et al. Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L.) on blood glucose and β-cells of streptozotocin-induced diabetic rats. Vet Res Forum. 2012;3:251–255.25653767
  • YuanD, LiuXM, FangZ, et al. Protective effect of resveratrol on kidney in rats with diabetic nephropathy and its effect on endoplasmic reticulum stress. Eur Rev Med Pharmacol Sci. 2018;22:1485–1493. doi:10.26355/eurrev_201803_14497.29565511
  • MohammadBI, KareemZA, HadiNR, et al. Aliskiren retards the progression of renal disease in diabetes mellitus: an experimental study in rats. World J Pharm Res. 2014;2(6):1999–2011.
  • ShivannaN, NaikaM, KhanumF, et al. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications. 2013;27:103–113. doi:10.1016/j.jdiacomp.2012.10.001.23140911
  • BoopathyGTK, HongW. Role of Hippo pathway-YAP/TAZ signaling in angiogenesis. Front Cell Dev Biol. 2019;7:49. doi:10.3389/fcell.2019.00049.31024911
  • KumarV, AhmedD, GuptaPS, et al. Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of Melastoma malabathricum Linn. leaves in streptozotocin induced diabetic rats. BMC Complement Altern Med. 2013;13. doi:10.1186/1472-6882-13-222.
  • WangS, YangZ, XiongF, et al. Betulinic acid ameliorates experimental diabetic-induced renal inflammation and fibrosis via inhibiting the activation of NF-κB signaling pathway. Mol Cell Endocrinol. 2016;434:135–143. doi:10.1016/j.mce.2016.06.019.27364889
  • XieR, ZhangH, WangXZ, et al. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food Funct. 2017;8:299–306. doi:10.1039/c6fo01601d.28009869
  • YangWJ, LiYR, GaoH, et al. Protective effect of the ethanol extract from Ligusticum chuanxiong rhizome against streptozotocin–induced diabetic nephropathy in mice. J Ethnopharmacol. 2018;227:166–175. doi:10.1016/j.jep.2018.08.037.30176347
  • SurhYJ, KunduJK, NaHK, et al. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr. 2005;135(12):2993S–3001S. doi:10.1093/jn/135.12.2993s.16317160
  • Ganesh KumarK, ZhangJ, GaoS, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity. 2012;20:1394–1402. doi:10.1038/oby.2012.31.22318315
  • LovrenF, PanY, QuanA, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185–S192. doi:10.1161/CIRCULATIONAHA.109.931782.20837912
  • NavaleAM, ParanjapeA. Antidiabetic and renoprotective effect of Anogeissus acuminata leaf extract on experimentally induced diabetic nephropathy. J Basic Clin Physiol Pharmacol. 2018;29:359–364. doi:10.1515/jbcpp-2017-0190.29617268
  • YuLY, ShiWL, GuoXG. Cardio-protective role of gingerol along with prominent anti-diabetic cardiomyopathy action in a streptozotocin-induced diabetes mellitus rat model. Cell J. 2017;19(3):469–475. doi:10.22074/cellj.2017.4509.28836409
  • GhoshalS, StevensJR, BillonC, et al. An endocrine link between the biological clock and cholesterol homeostasis. Mol Metab. 2018;8:51–64. doi:10.1016/j.molmet.2017.12.002.29331507
  • SalmaB, JanhaviP, MuthaiahS, et al. Ameliorative efficacy of the cassia auriculata root against high-fat-diet + STZ-induced type-2 diabetes in C57BL/6 mice. ACS Omega. 2021;6(1):492–504. doi:10.1021/acsomega.0c04940.33458501
  • KunduA, DeyP, SarkarP, et al. Protective effects of Croton hookeri on streptozotocin-induced diabetic nephropathy. Food Chem Toxicol. 2020;135:110873. doi:10.1016/j.fct.2019.110873.31600566
  • KumarV, AnwarF, AhmedD, et al. Paederia foetida Linn. leaf extract: an antihyperlipidemic, antihyperglycaemic and antioxidant activity. BMC Complement Altern Med. 2014;14:76. doi:10.1186/1472-6882-14-7624564866
  • KumarV, AhmedD, VermaA, et al. Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. An ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complement Altern Med. 2013;13:273. doi:10.1186/1472-6882-13-27324138888
  • KumarV, SharmaK, AhmedB, et al. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Adv. 2018;8:18180–18196. doi:10.1039/c7ra12568b.
  • DiasLD, CasaliKR, LeguisamoNM, et al. Renal denervation in an animal model of diabetes and hypertension: impact on the autonomic nervous system and nephropathy. Cardiovasc Diabetol. 2011;10:33. doi:10.1186/1475-2840-10-33.21496329
  • MuraliR, KarthikeyanA, SaravananR. Protective effects of d-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol. 2013;112(3):175–181. doi:10.1111/bcpt.12010.22998493
  • YokozawaT, ChoEJ, ParkCH, et al. Protective effect of proanthocyanidin against diabetic oxidative stress. Evid Based Compl Altern Med. 2012;2012:1–11. doi:10.1155/2012/623879.
  • JiangT, HuangZ, LinY, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:850–860. doi:10.2337/db09-1342.20103708
  • XuZ, WeiY, GongJ, et al. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 2014;57(1):204–213. doi:10.1007/s00125-013-3093-8.24186494
  • ForbesJM, CoughlanMT, CooperME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446–1454. doi:10.2337/db08-0057.18511445
  • RobertsCK, SindhuKK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84(21–22):705–712. doi:10.1016/j.lfs.2009.02.026.19281826
  • SharmaS, AnjaneyuluM, KulkarniSK, et al. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology. 2006;76:69–75. doi:10.1159/00008972016286809
  • NishaR. Biochemical evaluation of creatinine and urea in patients with renal failure undergoing hemodialysis. J Clin Pathol Lab Med. 2017;1(2):1–5.
  • CalabreseV, MancusoC, SapienzaM, et al. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007;12:299–306. doi:10.1379/CSC-270.118229449
  • RoloAP, PalmeiraCM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212:167–178. doi:10.1016/j.taap.2006.01.003.16490224
  • ZhuL, WeiT, ChangX, et al. Effects of salidroside on myocardial injury in vivo in vitro via regulation of Nox/NF-κB/AP1 pathway. Inflammation. 2015;38:1589–1598. doi:10.1007/s10753-015-0134-025682470
  • LimAKH, TeschGH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012;2012:146154. doi:10.1155/2012/146154.22969168
  • KingGL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79:1527–1534. doi:10.1902/jop.2008.080246.18673007
  • Navarro-GonzálezJF, Mora-FernándezC. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19:433–442. doi:10.1681/ASN.2007091048.18256353
  • SharmaK. Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl. 2014;4(1):113–117. doi:10.1038/kisup.2014.21.
  • KanasakiK, TaduriG, KoyaD. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne). 2013;4:7. doi:10.3389/fendo.2013.00007.23390421
  • MohamedAK, BierhausA, SchiekoferS, et al. The role of oxidative stress and NF-κB activation in late diabetic complications. BioFactors. 1999;10:157–167. doi:10.1002/biof.5520100211.10609877
  • MezzanoS, ArosC, DroguettA, et al. NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19:2505–2512. doi:10.1093/ndt/gfh207.15280531
  • AhangarpourA, OroojanAA, KhorsandiL, et al. Preventive effects of betulinic acid on streptozotocin-nicotinamide induced diabetic nephropathy in male mouse. J Nephropathol. 2016;5(4):128–133. doi:10.15171/jnp.2016.24.27921024