206
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Charge-Transfer Complex of Linifanib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: Synthesis, Spectroscopic Characterization, Computational Molecular Modelling and Application in the Development of Novel 96-microwell Spectrophotometric Assay

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 1167-1180 | Published online: 12 Mar 2021

References

  • MullikenRS, PearsonWB. Molecular Complexes. Wiley Publishers; 1969.
  • FosterR. Organic Charge-Transfer Complexes. Academic Press; 1969.
  • DasSK, KrishnamorthyG, DofraSK. Excited state intramolecular proton transfer in 2-(2’-hydroxyphenyl)-1H-naphth-[2,3-d]-imidazole: effects of solvents and pH. Can J Chem. 2000;78(2):191–205. doi:10.1139/v99-244
  • DattaAS, BagchiS, ChakraborttyA, et al. Studies on the weak interactions and CT complex formations between chloranilic acid, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties, theoretically, spectrophotometrically aided by FTIR. Spectrochim Acta A. 2015;146:119–128.
  • LiuH, LiuZ, JiangW, et al. Tuning the charge transfer properties by optimized donor –acceptor cocrystal for FET applications: from P type to N type. J Solid State Chem. 2019;274:47–51. doi:10.1016/j.jssc.2019.03.017
  • MurugesanV, SaravanabhavanM, SekarM. Synthesis, spectral, structural analysis and biological evaluation of a new hydrogen-bonded charge-transfer complex: 2,3-dimethylquinoxalinium-p-toluenesulfonate. J Photochem Photobiol B. 2014;140:20–27. doi:10.1016/j.jphotobiol.2014.07.00325063982
  • SinghN, KhanIM, AhmadA, et al. Preparation, spectral investigation and spectrophotometric studies of proton transfer complex of 2,2′-bipyridine with 3,5-dinitrobenzoic acid in various polar solvents. J Mol Struct. 2014;1065–1066:74–85. doi:10.1016/j.molstruc.2014.02.017
  • AlmalkiASA, AlhadhramiA, AdamAMA, et al. Preparation of elastic polymer slices have the semiconductors properties for use in solar cells as a source of new and renewable energy. J Photochem Photobiol A. 2018;361:76–85. doi:10.1016/j.jphotochem.2018.05.001
  • AlmalkiASA, AlhadhramiA, ObaidRJ, et al. Preparation of some compounds and study their thermal stability for use in dye sensitized solar cells. J Mol Liq. 2018;261:565–582. doi:10.1016/j.molliq.2018.04.057
  • DarwishIA, WaniTA, KhalilNY, et al. Microwell spectrophotometric method with high-throughput for determination of the macrolide antibiotics in their pharmaceutical formulations. Latin Am J Pharm. 2014;33:928–934.
  • SalehGA, AskalHF, DarwishIA, et al. Spectroscopic analytical study for the charge-transfer complexation of certain cephalosporins with chloranilic acid. Anal Sci. 2003;19(2):281–287. doi:10.2116/analsci.19.28112608760
  • DarwishIA, AlshehriJM, AlzomanNZ, et al. Charge-transfer reaction of 1,4-benzoquinone with crizotinib: spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib. Spectrochim Acta A. 2014;131:347–354. doi:10.1016/j.saa.2014.04.099
  • DarwishIA, AlshehriJM, AlzomanNZ, et al. Charge-transfer reaction of chloranilic acid with crizotinib: spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib. J Soln Chem. 2014;43(7):1282–1295. doi:10.1007/s10953-014-0203-2
  • DarwishIA, WaniTA, KhalilNY, et al. High throughput microwell spectrophotometric assay for olmesartan medoxomil in tablets based on its charge-transfer reaction with DDQ. Acta Pharm. 2014;64(1):63–75. doi:10.2478/acph-2014-000824670352
  • DarwishIA, MahmoudAM, Al-majedAA. Novel analytical approach for reducing the consumption of organic solvents in the charge transfer-based spectrophotometric analysis of losartan potassium. Int J Res Pharm Sci. 2010;1:391–395.
  • KhalilNY, WaniTA, DarwishIA, et al. Charge-transfer reaction of cediranib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: spectrophotometric investigation and use in development of microwell assay for cediranib. Trop J Pharm Res. 2015;14:1667–1672.
  • AlzomanNZ, SultanMA, MaherHM, et al. Analytical study for the charge-transfer complexes of rosuvastatin calcium with π-acceptors. Molecules. 2013;18(7):7711–7725. doi:10.3390/molecules1807771123823872
  • DarwishIA, WaniTA, KhalilNY, et al. Development of a novel microwell assay with high throughput for determination of olmesartan medoxomil in its tablets. Chem Cent J. 2012;6(1):1–7. doi:10.1186/1752-153X-6-122214530
  • WaniTA, AhmadA, ZargarS, et al. Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablet. Chem Cent J. 2012;6(1):1–9. doi:10.1186/1752-153X-6-13422214530
  • ManL, LiT, WuX, et al. Synthesis, crystal structure, vibrational spectra, nonlinear optical property of an organic charge-transfer compound-4-nitrobenzyl isoquinolinium picrate based on DFT calculations. J Mol Struct. 2019;1175:971–978. doi:10.1016/j.molstruc.2018.07.054
  • MiyanL, Zulkarnain AhmadA. Spectroscopic and spectrophotometric studies on hydrogen bonded charge transfer complex of 2-amino-4-methylthiazole with chloranilic acid at different temperatures. J Mol Liq. 2018;262:514–526. doi:10.1016/j.molliq.2018.04.084
  • AlamK, KhanIM. Crystallographic, dynamic and Hirshfeld surface studies of charge transfer complex of imidazole as a donor with 3,5-dinitrobenzoic acid as an acceptor: determination of various physical parameters. Org Electron. 2018;63:7–22. doi:10.1016/j.orgel.2018.08.037
  • ChaudhuriT, SantraS, JanaS, et al. Determination of vertical ionization potential of nitroso-benzoimidazothiazole using charge transfer interaction with a series of acceptors. Spectrochim Acta A. 2018;204:403–408. doi:10.1016/j.saa.2018.06.083
  • GogoiP, MohanU, BorpuzariMP, et al. UV–Vis spectroscopy and density functional study of solvent effect on the charge transfer band of the n → σ* complexes of 2-methylpyridine and 2-chloropyridine with molecular iodine. J Mol Struct. 2017;1131:114–123. doi:10.1016/j.molstruc.2016.11.040
  • MisraP, BadogaS, ChennaA, et al. Denitrogenation and desulfurization of model diesel fuel using functionalized polymer: charge transfer complex formation and adsorption isotherm study. Chem Eng J. 2017;325:176–187. doi:10.1016/j.cej.2017.05.033
  • National Library of Medicine. COVID-19 is an emerging, rapidly evolving situation; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Linifanib. Accessed 128, 2020.
  • FaguetGB. A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer. 2015;136(9):2022–2036. doi:10.1002/ijc.2913425113657
  • Glade-BenderJ, KandelJJ, YamashiroDJ. VEGF blocking therapy in the treatment of cancer. Exper Opin Biol Ther. 2003;3(2):263–276. doi:10.1517/14712598.3.2.263
  • ZhaoY, AdjeiAA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncol. 2015;20(6):660–673. doi:10.1634/theoncologist.2014-0465
  • YuJ, UstachC, KimHR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol. 2003;36(1):49–59. doi:10.5483/bmbrep.2003.36.1.04912542975
  • DunnIF, HeeseO, BlackPM. Growth factors in glioma angiogenesis: fGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50(1/2):121–137. doi:10.1023/A:100643662486211245272
  • ShiehYS, LaiCY, KaoYR, et al. Expression of Axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia. 2005;7:1058–1064. doi:10.1593/neo.0564016354588
  • HalstedWS. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins hospital from June, 1889, to January, 1894. Ann Surg. 1894;20:497–555. doi:10.1097/00000658-189407000-00075
  • FisherB, AndersonS, BryantJ, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347(16):1233–1241. doi:10.1056/NEJMoa02215212393820
  • HubbardSR, MillerWT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117–123. doi:10.1016/j.ceb.2007.02.01017306972
  • HorinouchiH, YamamotoN, NokiharaH, et al. A Phase 1 study of linifanib in combination with carboplatin/paclitaxel as first-line treatment of Japanese patients with advanced or metastatic non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol. 2014;74(1):37–43. doi:10.1007/s00280-014-2478-924807459
  • LiBT, BarnesTA, ChanDL, et al. The addition of anti-angiogenic tyrosine kinase inhibitors to chemotherapy for patients with advanced non-small-cell lung cancers: a meta-analysis of randomized trials. Lung Cancer. 2016;102:21–27. doi:10.1016/j.lungcan.2016.10.00427987583
  • ChenJ, GuoJ, ChenZ, et al. Linifanib (ABT-869) potentiates the efficacy of chemotherapeutic agents through the suppression of receptor tyrosine kinase-mediated AKT/mTOR signaling pathways in gastric cancer. Sci Rep. 2016;6(1):29382. doi:10.1038/srep2938227387652
  • DabneyR, DevineR, SeinN, et al. New agents in renal cell carcinoma. Target Oncol. 2014;9(3):183–193. doi:10.1007/s11523-013-0303-824243495
  • HsuHW, WallNR, HsuehCT, et al. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 2014;50:19–26. doi:10.1016/j.oraloncology.2013.10.00324269532
  • PaulusYM, SodhiA. Anti-angiogenic therapy for retinal disease. Handb Pharmacol. 2017;242:271–307.
  • WongCI, KohTS, SooR, et al. Phase I and biomarker study of abt-869, a multiple receptor tyrosine kinase inhibitor, in patients with refractory solid malignancies. J Clin Oncol. 2009;27:4718–4726. doi:10.1200/JCO.2008.21.712519720910
  • Sadeghian-RiziS, KhodarahmiGA, SakhtemanA. Biological evaluation, docking and molecular dynamic simulation of some novel diaryl urea derivatives bearing quinoxalindione moiety. Res Pharm Sci. 2017;12(6):500–509. doi:10.4103/1735-5362.21743029204178
  • LondonN, MillerRM, KrishnanS, et al. Covalent docking of large libraries for the discovery of chemical probes. Nature Chem Biol. 2014;10(12):1066–1072. doi:10.1038/nchembio.166625344815
  • SantiagoT, DeVauxRS, KurzatkowskaK, et al. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. Int J Nanomed. 2017;12:7763–7776. doi:10.2147/IJN.S149306
  • RunningL, EspinalR, HepelM. Controlled release of targeted chemotherapeutic drug dabrafenib for melanoma cancers monitored using surface-enhanced Raman scattering (SERS) spectroscopy. Mediterr J Chem. 2018;7(1):18–27. doi:10.13171/mjc71/01803171500-hepel
  • SmithM, HepelM. Controlled release of targeted anti-leukemia drugs azacitidine and decitabine monitored using surface-enhanced Raman scattering (SERS) spectroscopy. Mediterr J Chem. 2017;6:125–132. doi:10.13171/mjc64/01706081223-hepel
  • BenesiHA, HildebrandJ. Physical Pharmacy. Fourth ed. Lea & Febiger; 1993:266.
  • JobP. Formation and Stability of Inorganic Complexes in Solution. Ann Chem. 1963;16:97.
  • SkoogDA. Principle of Instrumental Analysis. Third ed. Saunder; 1985.
  • KaripcinF, DedeB, CaglarY, et al. A new dioxime ligand and its trinuclear copper(II) complex: synthesis, characterization and optical properties. Opt Commun. 2007;272(1):131–137. doi:10.1016/j.optcom.2006.10.079
  • MakułaP, PaciaM, MacykW. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett. 2018;9(23):6814–6817. doi:10.1021/acs.jpclett.8b0289230990726
  • VogelAI, TatchellAR, FurnisBS, et al. Vogel’s Textbook of Practical Organic Chemistry. Fifth. Longman group UK Ltd;1989.
  • Polarity Index. Burdick & Jackson solvents. Available from: http://macro.lsu.edu/howto/solvents/polarity%20index.htm. Accessed 128, 2020.
  • PandeeswaranM, ElangoKP. Solvent effect on the charge transfer complex of oxatomide with 2,3-dichloro-5,6-dicyanobenzoquinone. Spectrochim Acta A. 2006;65(5):1148–1153. doi:10.1016/j.saa.2005.12.037
  • ICH Guideline Q2(R1). Validation of analytical procedures: text and methodology. The International Conference on Harmonization; 2005.
  • MelbyLR, PataiS, Ed. The Chemistry of the Cyano Group. Interscience Publisher/John Wiley & Sons; 1970.
  • YamagishiA. Solvation effects on the electron-transfer reaction of TCNQ anion radical and 2,3-dichloro-5,6-dicyano-p-benzoquinone. Bull Soc Jpn. 1975;48:2440–2447. doi:10.1246/bcsj.48.2440
  • IqbalM, EzzeldinE, WaniTA, et al. Simple, sensitive and rapid determination of linifanib (ABT-869), a novel tyrosine kinase inhibitor in rat plasma by UHPLC-MS/MS. Chem Cent J. 2014;8(1):1–8. doi:10.1186/1752-153X-8-1324386928
  • RodilaRC, KimJC, JiQC, et al. High-throughput, fully automated liquid/liquid extraction liquid chromatography/mass spectrometry method for the quantitation of a new investigational drug ABT-869 and its metabolite A-849529 in Human plasma samples. Rapid Commun Mass Spectrom. 2006;20(20):3067–3075. doi:10.1002/rcm.270316969771
  • ZawanehAH, KhalilNN, IbrahimSA, et al. Micelle-enhanced direct spectrofluorimetric method for the determination of linifanib: application to stability studies. Luminescence. 2017;32(7):1162–1168. doi:10.1002/bio.330428378538
  • WennborgH, BondeJP, StenbeckM, et al. Adverse reproduction outcomes among employee in biomedical research laboratories. J Scand Work Environ Health. 2002;28(1):5–11. doi:10.5271/sjweh.640
  • WennborgH, LennartB, HarriV, et al. Pregnancy outcome of personnel in Swedish biomedical research laboratories. Occup Environ Med. 2000;42(4):438–446. doi:10.1097/00043764-200004000-00022
  • KristensenP, HiltB, SvendsenK, et al. Incidence of lymphohaematopoietic cancer at university laboratory: a cluster investigation. Eur J Epidemiol. 2008;23(1):11–15. doi:10.1007/s10654-007-9203-517985198
  • BurbaumJJ. Miniaturization technologies in HTS: how fast, how small, how soon? Drug Discov Today. 1998;3(7):313–322. doi:10.1016/S1359-6446(98)01203-3
  • SittampalamGS, KahlSD, JanzenWP. High-throughput screening: advances in assay technologies. Curr Opin Chem Biol. 1997;1(3):384–391. doi:10.1016/S1367-5931(97)80078-69667878