189
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Network Pharmacology Analysis of ZiShenWan for Diabetic Nephropathy and Experimental Verification of Its Anti-Inflammatory Mechanism

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 1577-1594 | Published online: 15 Apr 2021

References

  • ZhangL, LongJ, JiangW, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–906. doi:10.1056/NEJMc160246927579659
  • WenCP, ChangCH, TsaiMK, et al. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int. 2017;92(2):388–396. doi:10.1016/j.kint.2017.01.03028577854
  • LewisEJ, LewisJB. Treatment of diabetic nephropathy with angiotensin II receptor antagonist. Clin Exp Nephrol. 2003;7(1):1–8. doi:10.1007/s10157030000014586737
  • GallagherH, SucklingRJ. Diabetic nephropathy: where are we on the journey from pathophysiology to treatment? Diabetes Obes Metab. 2016;18(7):641–647. doi:10.1111/dom.1263026743887
  • Donate-CorreaJ, Luis-RodríguezD, Martín-NúñezE, et al. Inflammatory targets in diabetic nephropathy. J Clin Med. 2020;9(2):458. doi:10.3390/jcm9020458
  • LiG. [LanShiMiCang]. In: WenQ, DingGH, eds. Beijing: People’s Medical Publishing House; 2012.
  • LiangG, TangH, NiD, et al. Zishenwan decreases kidney damage in recurrent urinary tract infection through the inhibition of toll-like receptor 4 signal. Evid Based Complement Alternat Med. 2018;2018:5968657. doi:10.1155/2018/596865730519266
  • LiZ, QiZ. [Analysis on the pathogenesis of diabetes from Shi Jinmo’s medicine couples]. Beijing J Tradit Chin Med. 2012;31(1):28–29, 72. Chinese. doi:10.16025/j.1674-1307.2012.01.009
  • MiuraT, IchikiH, IwamotoN, et al. Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol Pharm Bull. 2001;24(9):1009–1011. doi:10.1248/bpb.24.100911558559
  • KimHJ, KongMK, KimYC. Beneficial effects of Phellodendri Cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats. BMB Rep. 2008;41(10):710–715. doi:10.5483/bmbrep.2008.41.10.71018959817
  • YanYM, FangP, YangMT, LiN, LuQ, ChengYX. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J Ethnopharmacol. 2015;165:141–147. doi:10.1016/j.jep.2015.01.04925725434
  • TangYH, SunZL, FanMS, LiZX, HuangCG. Anti-diabetic effects of TongGuanWan, a Chinese traditional herbal formula, in C57BL/KsJ-db/db mice. Planta Med. 2012;78(1):18–23. doi:10.1055/s-0031-128026822002851
  • ZhuX, ChengYQ, DuL, et al. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Res. 2015;29:295–302. doi:10.1002/ptr.525425380391
  • MaX, ChenZ, WangL, et al. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: its inhibition by berberine. Front Pharmacol. 2018;9:782. doi:10.3389/fphar.2018.0078230100874
  • LiaoJC, DengJS, ChiuCS, et al. Anti-inflammatory activities of cinnamomum cassia constituents in vitro and in vivo. Evid Based Complement Alternat Med. 2012;2012:429320. doi:10.1155/2012/42932022536283
  • ZhangGB, LiQY, ChenQL, SuSB. Network pharmacology: a new approach for chinese herbal medicine research. Evid Based Complement Alternat Med. 2013;2013:621423. doi:10.1155/2013/62142323762149
  • RuJ, LiP, WangJ, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-1324735618
  • DavisAP, GrondinCJ, JohnsonRJ, et al. The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 2019;47(D1):948–954. doi:10.1093/nar/gky868
  • WangY, ZhangS, LiF, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):1031–1041. doi:10.1093/nar/gkz981
  • WishartDS, FeunangYD, GuoAC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):1074–1082. doi:10.1093/nar/gkx1037
  • HamoshA, ScottAF, AmbergerJS, BocchiniCA, McKusickVA. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(D):514–517. doi:10.1093/nar/gki033
  • BeckerKG, BarnesKC, BrightTJ, WangSA. The genetic association database. Nat Genet. 2004;36(5):431–432. doi:10.1038/ng0504-43115118671
  • Whirl-CarrilloM, McDonaghEM, HebertJM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–417. doi:10.1038/clpt.2012.9622992668
  • MorgatA, LombardotT, CoudertE, et al. Enzyme annotation in UniProtKB using Rhea. Bioinformatics. 2020;36(6):1896–1901. doi:10.1093/bioinformatics/btz81731688925
  • OtasekD, MorrisJH, BouçasJ, PicoAR, DemchakB. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185. doi:10.1186/s13059-019-1758-431477170
  • SzklarczykD, GableAL, LyonD, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):607–613. doi:10.1093/nar/gky113130335158
  • Huang daW, ShermanBT, LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi:10.1038/nprot.2008.21119131956
  • JaikumkaoK, PongchaidechaA, ChueakulaN, et al. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab. 2018;20(11):2617–2626. doi:10.1111/dom.1344129923295
  • ElMahdyMK, HelalMG, EbrahimTM. Potential anti-inflammatory effect of dapagliflozin in HCHF diet-induced fatty liver degeneration through inhibition of TNF-α, IL-1β, and IL-18 in rat liver. Int Immunopharmacol. 2020;86:106730. doi:10.1016/j.intimp.2020.10673032599319
  • LiuH, ZhaoL, ZhangJ, et al. Critical role of cysteine-rich protein 61 in mediating the activation of renal fibroblasts. Front Physiol. 2019;10:464. doi:10.3389/fphys.2019.0046431130867
  • YiuWH, WongDW, WuHJ, et al. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE induced oxidative stress. Kidney Int. 2016;89(2):386–398. doi:10.1038/ki.2015.33126536000
  • KanwarYS, SunL, XieP, LiuFY, ChenS. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6:395–423. doi:10.1146/annurev.pathol.4.110807.09215021261520
  • WardMG, LiG, Barbosa-LorenziVC, HaoM. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Sci Rep. 2017;7(1):9536. doi:10.1038/s41598-017-10209-028842702
  • LinCF, KuoKT, ChenTY, ChienCT. Quercetin-rich Guava (Psidium Guajava) juice in combination with Trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules. 2016;21(3):334. doi:10.3390/molecules2103033426978332
  • LiuWH, HeiZQ, NieH, et al. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin Med J (Engl). 2008;121(8):706–712. doi:10.1097/00029330-200804020-0000918701023
  • ZhangJ, ZhangR, WangY, et al. Effects of neutrophil-lymphocyte ratio on renal function and histologic lesions in patients with diabetic nephropathy. Nephrology (Carlton). 2019;24(11):1115–1121. doi:10.1111/nep.1351730346090
  • ZouLX, SunL. Global diabetic kidney disease research from 2000 to 2017: a bibliometric analysis. Medicine (Baltimore). 2019;98(6):e14394. doi:10.1097/MD.000000000001439430732183
  • ChenH, CharlatO, TartagliaLA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–495. doi:10.1016/s0092-8674(00)81294-58608603
  • SharmaK, McCueP, DunnSR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284(6):F1138- F1144. doi:10.1152/ajprenal.00315.200212736165
  • NowakN, SkupienJ, SmilesAM, et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int. 2018;93(5):1198–1206. doi:10.1016/j.kint.2017.11.02429398132
  • TangSC, LaiKN. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant. 2012;27(8):3049–3056. doi:10.1093/ndt/gfs26022734110
  • TungCW, HsuYC, ShihYH, ChangPJ, LinCL. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton). 2018;23(Suppl 4):32–37. doi:10.1111/nep.1345130298646
  • OkonogiH, NishimuraM, UtsunomiyaY, et al. Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus. Clin Nephrol. 2001;55(5):357–364.11393380
  • EssawyM, SoylemezogluO, Muchaneta-KubaraEC, ShortlandJ, BrownCB, El NahasAM. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant. 1997;12(1):43–50. doi:10.1093/ndt/12.1.439027772
  • LiJ, QuX, BertramJF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175(4):1380–1388. doi:10.2353/ajpath.2009.09009619729486
  • ChenYL, QiaoYC, XuY, et al. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: a systematic review and meta-analysis. Immunol Lett. 2017;186:52–58. doi:10.1016/j.imlet.2017.04.00328414180
  • ParkJ, RyuDR, LiJJ, et al. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am J Physiol Renal Physiol. 2008;295(3):F749–F757. doi:10.1152/ajprenal.00547.200718579703
  • CargnelloM, RouxPP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi:10.1128/MMBR.00031-1021372320
  • MaFY, LiuJ, Nikolic-PatersonDJ. The role of stress-activated protein kinase signaling in renal pathophysiology. Braz J Med Biol Res. 2009;42(1):29–37. doi:10.1590/s0100-879x200800500004918982195
  • RaneMJ, SongY, JinS, et al. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. Am J Physiol Renal Physiol. 2010;298(1):F49–F61. doi:10.1152/ajprenal.00032.200919726550
  • FlyvbjergA. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia. 2000;43(10):1205–1223. doi:10.1007/s00125005151511079738
  • TiltonRG, KawamuraT, ChangKC, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest. 1997;99(9):2192–2202. doi:10.1172/JCI1193929151791
  • SungSH, ZiyadehFN, WangA, PyagayPE, KanwarYS, ChenS. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol. 2006;17(11):3093–3104. doi:10.1681/ASN.200601006416988063
  • HoC, HsuYC, TsengCC, et al. Simvastatin alleviates diabetes-induced VEGF-mediated nephropathy via the modulation of Ras signaling pathway. Ren Fail. 2008;30(5):557–565. doi:10.1080/0886022080206445718569938
  • TanAL, ForbesJM, CooperME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–143. doi:10.1016/j.semnephrol.2007.01.00617418682
  • YamamotoY, KatoI, DoiT, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest. 2001;108(2):261–268. doi:10.1172/JCI1177111457879
  • ReinigerN, LauK, McCallaD, et al. Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes. 2010;59(8):2043–2054. doi:10.2337/db09-176620627935
  • WendtTM, TanjiN, GuoJ, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol. 2003;162(4):1123–1137. doi:10.1016/S0002-9440(10)63909-012651605