765
Views
27
CrossRef citations to date
0
Altmetric
Review

Progress of Plant Medicine Derived Extracts and Alkaloids on Modulating Viral Infections and Inflammation

, , &
Pages 1385-1408 | Published online: 31 Mar 2021

References

  • VahidniaF, StramerSL, KesslerD, et al. Recent viral infection in US blood donors and health-related quality of life (HRQOL). Qual Life Res. 2017;26:349–357. doi:10.1007/s11136-016-1392-527534773
  • NicholKL. The efficacy, effectiveness and cost-effectiveness of inactivated influenza virus vaccines. Vaccine. 2003;21:1769–1775. doi:10.1016/s0264-410x(03)00070-712686092
  • MartinezFJ. Pathogen-directed therapy in acute exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2007;4:647–658. doi:10.1513/pats.200707-097TH18073397
  • ChoYK, KimJE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res. 2017;41:222–226. doi:10.1016/j.jgr.2016.12.00628413328
  • Gurib-FakimA. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27:1–93. doi:10.1016/j.mam.2005.07.00816105678
  • MoghadamtousiSZ, NikzadS, KadirHA, AbubakarS, ZandiK. Potential antiviral agents from marine fungi: an overview. Mar Drugs. 2015;13:4520–4538. doi:10.3390/md1307452026204947
  • NewmanDJ, CraggGM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. doi:10.1021/acs.jnatprod.9b0128532162523
  • GuptaMK, SharmaPK. A Text Book of Pharmacognosy. 3rd ed. Meerut: Pragati Prakashan; 2014.
  • BauriedelG, GaneshS, UberfuhrP, WelschU, HöflingB. [Growth-inhibiting effect of colchicine on cultured vascular wall myocytes from arteriosclerotic lesions]. Z Kardiol. 1992;81:92–98. German.1549925
  • WeiW, DuH, ShaoC, et al. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A. Front Pharmacol. 2019;10:961. doi:10.3389/fphar.2019.0096131551774
  • AmashehM, FrommA, KrugSM, et al. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci. 2010;123:4145–4155. doi:10.1242/jcs.07089621062898
  • RutherfordGW, AnglemyerA, EasterbrookPJ, et al. Predicting treatment failure in adults and children on antiretroviral therapy. Aids. 2014;28:S161–S169. doi:10.1097/QAD.000000000000023624849476
  • GujjetiR, NamthabadS, MamidalaE. HIV-1 reverse transcriptase inhibitory activity of Aerva lanata plant extracts. BMC Infect Dis. 2014;14:1–11. doi:10.1186/1471-2334-14-S3-P1224380631
  • Monera-PendukaTG, MapongaCC, WolfeAR, WiesnerL, MorseGD, NhachiCF. Effect of Moringa oleifera Lam. leaf powder on the pharmacokinetics of nevirapine in HIV-infected adults: a one sequence cross-over study. AIDS Res Ther. 2017;14:12. doi:10.1186/s12981-017-0140-428293270
  • NworuCS, OkoyeEL, EzeifekaGO, et al. Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. Afr J Biotechnol. 2013;12:4866–4873. doi:10.5897/AJB2013.12343
  • NutanN, ModiM, Dezzutti,CS, et al. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J. 2013;10:309. doi:10.1186/1743-422x-10-30925228267
  • EstariM, VenkannaL, SripriyaD, LalithaR. Human immunodeficiency virus (HIV-1) reverse transcriptase inhibitory activity of Phyllanthus emblica plant extract. Biol Med. 2012;4:178–182.
  • WilsonD, GogginK, WilliamsK, et al. Consumption of Sutherlandia frutescens by HIV-seropositive South African Adults: an adaptive double-blind randomized placebo controlled trial. PLoS One. 2015;10:e0128522. doi:10.1371/journal.pone.012852226186450
  • ZhangX, YangLM, LiuGM, et al. Potent anti-HIV activities and mechanisms of action of a pine cone extract from Pinus yunnanensis. Molecules. 2012;17:6916–6929. doi:10.3390/molecules1706691622728366
  • LouvelS, MoodleyN, SeibertI, et al. Identification of compounds from the plant species Alepidea amatymbica active against HIV. S Afr J Bot. 2013;86:9–14. doi:10.1016/j.sajb.2013.01.009
  • KapewangoloP, HusseinAA, MeyerD. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol. 2013;149:184–190. doi:10.1016/j.jep.2013.06.01923811046
  • LiangJ, ChenJ, TanZ, et al. Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J Food Drug Anal. 2013;21:S52–S58. doi:10.1016/j.jfda.2013.09.034
  • XiaoWL, WangRR, ZhaoW, et al. Anti-HIV-1 activity of lignans from the fruits of Schisandra rubriflora. Arch Pharm Res. 2010;33:697–701. doi:10.1007/s12272-010-0508-720512467
  • XuL, GrandiN, Del VecchioC, et al. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J Microbiol. 2015;53:288–293. doi:10.1007/s12275-015-4652-025740376
  • ZhangYB, LuoD, YangL, et al. Matrine-Type Alkaloids from the Roots of Sophora flavescens and Their Antiviral Activities against the Hepatitis B Virus. J Nat Prod. 2018;81:2259–2265. doi:10.1021/acs.jnatprod.8b0057630298740
  • LeNT, HoDV, DoanTQ, et al. In vitro antimicrobial activity of essential oil extracted from leaves of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le in Vietnam. Plants. 2020;9:453–467. doi:10.3390/plants9040453
  • LeNT, HoDV, DoanTQ, et al. Biological activities of essential oils from leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics. 2020;9:207–219. doi:10.3390/antibiotics9040207
  • LeNT, DonaduMG, HoDV, et al. Biological activities of essential oil extracted from leaves of Atalantia sessiflora Guillauminin Vietnam. J Infect Dev Ctries. 2020;14:1054–1064. doi:10.3855/jidc.1246933031096
  • DangZ, ZhuL, LaiW, et al. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med Chem Lett. 2016;7:240–244. doi:10.1021/acsmedchemlett.5b0033926985308
  • Chaves ValadãoAL, AbreuCM, DiasJZ, et al. Natural plant alkaloid (Emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules. 2015;20:11474–11489. doi:10.3390/molecules20061147426111177
  • WangYS, WenZQ, LiBT, ZhangHB, YangJH. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: an update. J Ethnopharmacol. 2016;181:66–107. doi:10.1016/j.jep.2016.01.03226812679
  • CustódioDL, da Veiga JuniorVF. Lauraceae alkaloids. RSC Adv. 2014;4:21864. doi:10.1039/C4RA01904K
  • AhmedN, BrahmbhattKG, SabdeS, MitraD, SinghIP, BhutaniKK. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg Med Chem. 2010;18:2872–2879. doi:10.1016/j.bmc.2010.03.01520350812
  • JadulcoRC, PondCD, Van WagonerRM, et al. 4-Quinolone alkaloids from Melochia odorata. J Nat Prod. 2014;77:183–187. doi:10.1021/np400847t24392742
  • ZhangBM, WangZB, XinP, WangQH, BuH, KuangHX. Phytochemistry and pharmacology of genus Ephedra. Chin J Nat Med. 2018;16:811–828. doi:10.1016/s1875-5364(18)30123-730502763
  • ZhangYB, ZhanLQ, LiGQ, et al. Dimeric matrine-type alkaloids from the roots of Sophora flavescens and their anti-hepatitis B virus activities. J Org Chem. 2016;81:6273–6280. doi:10.1021/acs.joc.6b0080427352066
  • ZhangYB, ZhangXL, ChenNH, et al. Four matrine-based alkaloids with antiviral activities against HBV from the seeds of Sophora alopecuroides. Org Lett. 2017;19:424–427. doi:10.1021/acs.orglett.6b0368528067050
  • ChouSC, HuangTJ, LinEH, HuangCH, ChouCH. Antihepatitis B virus constituents of Solanum erianthum. Nat Prod Commun. 2012;7:153–156. doi:10.1177/1934578X120070020522474941
  • RehmanS, AshfaqUA, RiazS, JavedT, RiazuddinS. Antiviral activity of Acacia nilotica against hepatitis C virus in liver infected cells. Virol J. 2011;8:220. doi:10.1186/1743-422x-8-22021569385
  • WahyuniTS, WidyawaruyantiA, LusidaMI, et al. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia. 2014;99:276–283. doi:10.1016/j.fitote.2014.10.01125454460
  • CaoMM, ZhangY, LiXH, et al. Cyclohexane-fused octahydroquinolizine alkaloids from myrioneuron faberi with activity against hepatitis C virus. J Organ Chem. 2014;79:7945–7950. doi:10.1021/jo501076x
  • ZhangX, LvXQ, TangS, et al. Discovery and evolution of aloperine derivatives as a new family of HCV inhibitors with novel mechanism. Eur J Med Chem. 2018;143:1053–1065. doi:10.1016/j.ejmech.2017.12.00229232582
  • HungTC, JasseyA, LiuCH, et al. Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine. 2019;53:62–69. doi:10.1016/j.phymed.2018.09.02530668413
  • PengZG, FanB, DuNN, et al. Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA. Hepatology. 2010;52:845–853. doi:10.1002/hep.2376620593456
  • KinoshitaE, HayashiK, KatayamaH, HayashiT, ObataA. Anti-influenza virus effects of elderberry juice and its fractions. Biosci Biotechnol Biochem. 2012;76:1633–1638. doi:10.1271/bbb.12011222972323
  • HoGT, AhmedA, ZouYF, AslaksenT, WangensteenH, BarsettH. Structure-activity relationship of immunomodulating pectins from elderberries. Carbohydr Polym. 2015;125:314–322. doi:10.1016/j.carbpol.2015.02.05725857988
  • PorterRS, BodeRF. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother Res. 2017;31:533–554. doi:10.1002/ptr.578228198157
  • HoGT, ZouYF, AslaksenTH, WangensteenH, BarsettH. Structural characterization of bioactive pectic polysaccharides from elderflowers (Sambuci flos). Carbohydr Polym. 2016;135:128–137. doi:10.1016/j.carbpol.2015.08.05626453860
  • YanYQ, FuYJ, WuS, et al. Anti-influenza activity of berberine improves prognosis by reducing viral replication in mice. Phytother Res. 2018;32:2560–2567. doi:10.1002/ptr.619630306659
  • WuY, LiJQ, KimYJ, WuJ, WangQ, HaoY. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin J Integr Med. 2011;17:444–452. doi:10.1007/s11655-011-0640-321660679
  • LeeIK, HwangBS, KimDW, et al. Characterization of neuraminidase inhibitors in Korean papaver rhoeas bee pollen contributing to anti-influenza activities in vitro. Planta Med. 2016;82:524–529. doi:10.1055/s-0041-11163126848705
  • ShiD, ChenM, LiuL, et al. Anti-influenza A virus mechanism of three representative compounds from Flos Trollii via TLRs signaling pathways. J Ethnopharmacol. 2020;253:112634. doi:10.1016/j.jep.2020.11263432004628
  • MengL, GuoQ, LiuY, et al. Indole alkaloid sulfonic acids from an aqueous extract of Isatis indigotica roots and their antiviral activity. Acta pharmaceutica Sinica B. 2017;7:334–341. doi:10.1016/j.apsb.2017.04.00328540170
  • LiuYF, ChenMH, GuoQL, et al. Antiviral glycosidic bisindole alkaloids from the roots of Isatis indigotica. J Asian Nat Prod Res. 2015;17:689–704. doi:10.1080/10286020.2015.105572926123248
  • PengJ, LinT, WangW, et al. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J Nat Prod. 2013;76:1133–1140. doi:10.1021/np400200k23758051
  • PingX, WeiyangY, JianweiC, et al. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix Isatidis). J Tradit Chin Med. 2016;36:369–376. doi:10.1016/S0254-6272(16)30051-627468553
  • LuoZ, LiuLF, WangXH, et al. Epigoitrin, an alkaloid from isatis indigotica, reduces H1N1 infection in stress-induced susceptible model in vivo and in vitro. Front Pharmacol. 2019;10:78. doi:10.3389/fphar.2019.0007830792656
  • LiR, LiuT, LiuM, ChenF, LiuS, YangJ. Anti-influenza A virus activity of dendrobine and its mechanism of action. J Agric Food Chem. 2017;65:3665–3674. doi:10.1021/acs.jafc.7b0027628417634
  • YangL, ZhangYB, ZhuangL, et al. Diterpenoid alkaloids from delphinium ajacis and their anti-RSV activities. Planta Med. 2017;83:111–116. doi:10.1055/s-0042-10725227405107
  • BagP, ChattopadhyayD, MukherjeeH, et al. Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virol J. 2012;9:98. doi:10.1186/1743-422x-9-9822624581
  • de SouzaLM, SassakiGL, RomanosMT, Barreto-BergterE. Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar Drugs. 2012;10:918–931. doi:10.3390/md1004091822690151
  • ChengHY, YangCM, LinTC, LinLT, ChiangLC, LinCC. Excoecarianin, isolated from phyllanthus urinaria linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid Based Complement Alternat Med. 2009;2011:259103.
  • FarahaniM. Anti-herpes simplex virus effect of camellia sinesis, echiumamoenum and nerium oleander. J Appl Environ Microbiol. 2014;2:102–105.
  • AstaniA, NavidMH, SchnitzlerP. Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytother Res. 2014;28:1547–1552. doi:10.1002/ptr.516624817544
  • ShakeriA, SahebkarA, JavadiB. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2016;188:204–228. doi:10.1016/j.jep.2016.05.01027167460
  • TanWC, JaganathIB, ManikamR, SekaranSD. Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int J Med Sci. 2013;10:1817–1829. doi:10.7150/ijms.690224324358
  • BenzekriR, BouslamaL, PapettiA, HammamiM, SmaouiA, LimamF. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb Pathog. 2018;114:291–298. doi:10.1016/j.micpath.2017.12.01729223449
  • SabatinoM, FabianiM, Božovi´cM, et al. Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils. Molecules. 2020;25:2452–2469. doi:10.3390/molecules25102452
  • TremlJ, GazdováM, ŠmejkalK, ŠudomováM, KubatkaP, HassanSTS. Natural products-derived chemicals: breaking barriers to novel anti-HSV drug development. Viruses. 2020;12. doi:10.3390/v12020154
  • CavalcantiJF, de AraujoMF, GonçalvesPB, et al. Proposed anti-HSV compounds isolated from Simira species. Nat Prod Res. 2018;32:2720–2723. doi:10.1080/14786419.2017.137591428927283
  • DonalisioM, NanaHM, NganeRA, et al. In vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complement Altern Med. 2013;13:266. doi:10.1186/1472-6882-13-26624131916
  • SagarS, KaurM, MinnemanKP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8:2619–2638. doi:10.3390/md810261921116410
  • RosalesPF, BordinGS, GowerAE, MouraS. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020;143:104558. doi:10.1016/j.fitote.2020.10455832198108
  • Mat RashidZ, AndrianiY, ShaariK, et al. Induction of apoptosis and anti HSV-1 activity of 3-(Phenethylamino) demethyl(oxy)aaptamine from a Malaysian Aaptos aaptos. J Chem Pharm Res. 2015;2015:330–341.
  • ChinLW, ChengYW, LinSS, et al. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch Virol. 2010;155:1933–1941. doi:10.1007/s00705-010-0779-920686799
  • HishikiT, KatoF, TajimaS, et al. Hirsutine, an indole alkaloid of uncaria rhynchophylla, inhibits late step in dengue virus lifecycle. Front Microbiol. 2017;8:1674. doi:10.3389/fmicb.2017.0167428912773
  • QuintanaVM, SeliskoB, BrunettiJE, et al. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res. 2020;176:104749. doi:10.1016/j.antiviral.2020.10474932081740
  • XuW, ZhangM, LiuH, et al. Antiviral activity of aconite alkaloids from Aconitum carmichaelii Debx. Nat Prod Res. 2019;33:1486–1490. doi:10.1080/14786419.2017.141638529271255
  • SuB, CaiC, DengM, LiangD, WangL, WangQ. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg Med Chem Lett. 2014;24:2881–2884. doi:10.1016/j.bmcl.2014.04.10124835986
  • RenG, DingG, ZhangH, et al. Antiviral activity of sophoridine against enterovirus 71 in vitro. J Ethnopharmacol. 2019;236:124–128. doi:10.1016/j.jep.2019.02.04530853644
  • JiaYL, WeiMY, ChenHY, GuanFF, WangCY, ShaoCL. (+)- and (-)-Pestaloxazine A, a pair of antiviral enantiomeric alkaloid dimers with a symmetric spiro[oxazinane-piperazinedione] skeleton from pestalotiopsis sp. Org Lett. 2015;17:4216–4219. doi:10.1021/acs.orglett.5b0199526291636
  • XiongHR, ShenYY, LuL, et al. The inhibitory effect of Rheum palmatum against coxsackievirus B3 in vitro and in vivo. Am J Chin Med. 2012;40:801–812. doi:10.1142/s0192415x1250060722809033
  • PanQM, LiYH, HuaJ, HuangFP, WangHS, LiangD. Antiviral matrine-type alkaloids from the rhizomes of Sophora tonkinensis. J Nat Prod. 2015;78:1683–1688. doi:10.1021/acs.jnatprod.5b0032526132528
  • NwodoUU, NgeneAA, IroegbuCU, OnyedikachiOA, ChigorVN, OkohAI. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus. Arch Virol. 2011;156:1551–1557. doi:10.1007/s00705-011-1032-x21614435
  • SunN, SunP, LvH, et al. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci Rep. 2016;6:24401. doi:10.1038/srep2440127080155
  • VargheseFS, KaukinenP, GläskerS, et al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res. 2016;126:117–124. doi:10.1016/j.antiviral.2015.12.01226752081
  • AbdulkhaleqLA, AssiMA, AbdullahR, Zamri-SaadM, Taufiq-YapYH, HezmeeMNM. The crucial roles of inflammatory mediators in inflammation: a review. Vet World. 2018;11:627–635. doi:10.14202/vetworld.2018.627-63529915501
  • LawrenceT, WilloughbyDA, GilroyDW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol. 2002;2:787–795. doi:10.1038/nri91512360216
  • GrivennikovSI, GretenFR, KarinM. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi:10.1016/j.cell.2010.01.02520303878
  • TriantafilouM, GamperFGJ, HastonRM, et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281:31002–31011. doi:10.1074/jbc.M60279420016880211
  • HerringtonFD, CarmodyRJ, GoodyearCS. Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J Biomol Screen. 2015;21:1087057115617456. doi:10.1177/1087057115617456
  • RamosI, Fernandez-SesmaA. Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs. Front Immunol. 2015;6:361. doi:10.3389/fimmu.2015.0036126257731
  • NizriE, Irony-Tur-SinaiM, LoryO, Orr-UrtregerA, LaviE, BrennerT. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol. 2009;183:6681–6688. doi:10.4049/jimmunol.090221219846875
  • LakhanSE, KirchgessnerA. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med. 2011;9:129. doi:10.1186/1479-5876-9-12921810260
  • ItoC, ItoigawaM, FurukawaA, et al. Quinolone alkaloids with nitric oxide production inhibitory activity from Orixa japonica. J Nat Prod. 2004;67:1800–1803. doi:10.1021/np040146215568765
  • RemppisA, BeaF, GretenHJ, et al. Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NFkappaB-dependent pathway. Mediators Inflamm. 2010;2010:194896. doi:10.1155/2010/19489620652055
  • LiF, WangHD, LuDX, et al. Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice. Acta Pharmacol Sin. 2006;27:1199–1205. doi:10.1111/j.1745-7254.2006.00368.x16923341
  • ZhangQ, PiaoXL, PiaoXS, LuT, WangD, KimSW. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol. 2011;49:61–69. doi:10.1016/j.fct.2010.09.03220932871
  • LiHM, WangYY, WangHD, et al. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol Sin. 2011;32:1364–1372. doi:10.1038/aps.2011.10221963898
  • WangH, LiK, MaL, et al. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virol J. 2017;14:2. doi:10.1186/s12985-016-0674-428081706
  • CronsteinBN, MoladY, ReibmanJ, BalakhaneE, LevinRI, WeissmannG. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96:994–1002. doi:10.1172/jci1181477543498
  • JangEJ, KimHK, JeongH, YeSL, HwangES. Anti‐adipogenic activity of the naturally occurring phenanthroindolizidine alkaloid antofine via direct suppression of PPARγ expression. Chem Biodivers. 2014;11:962–969. doi:10.1002/cbdv.20130036524934681
  • ChouST, JungF, YangSH, et al. Antofine suppresses endotoxin-induced inflammation and metabolic disorder via AMP-activated protein kinase. Pharmacol Res Perspect. 2017;5:e00337. doi:10.1002/prp2.337
  • TangJ, RazaA, ChenJ, XuH. A systematic review on the sinomenine derivatives. Mini Rev Med Chem. 2018;18:906–917. doi:10.2174/138955751766617112321255729173167
  • ChoiYH, ShinEM, KimYS, CaiXF, LeeJJ, KimHP. Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms. Arch Pharm Res. 2006;29:293–297. doi:10.1007/bf0296857316681034
  • ConwayGA, SlocumbJC. Plants used as abortifacients and emmenagogues by Spanish New Mexicans. J Ethnopharmacol. 1979;1:241–261. doi:10.1016/s0378-8741(79)80014-8232204
  • LiW, YangSY, YanXT, et al. NF-κB inhibitory activities of glycosides and alkaloids from Zanthoxylum schinifolium stems. Chem Pharm Bull (Tokyo). 2014;62:196–202. doi:10.1248/cpb.c13-0075924492590
  • LingJY, ZhangGY, CuiZJ, ZhangCK. Supercritical fluid extraction of quinolizidine alkaloids from Sophora flavescens Ait. and purification by high-speed counter-current chromatography. J Chromatogr A. 2007;1145:123–127. doi:10.1016/j.chroma.2007.01.08017289059
  • DaiJP, WangQW, SuY, et al. Oxymatrine inhibits influenza A virus replication and inflammation via TLR4, p38 MAPK and NF-κB pathways. Int J Mol Sci. 2018;19:965. doi:10.3390/ijms19040965