370
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Preparation Optimization of Bovine Serum Albumin Nanoparticles and Its Application for siRNA Delivery

, , ORCID Icon, &
Pages 1531-1547 | Published online: 14 Apr 2021

References

  • KimB, ParkJH, SailorMJ. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv Mater. 2019;31(49):e1903637. doi:10.1002/adma.20190363731566258
  • YonezawaS, KoideH, AsaiT. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154–155:64–78. doi:10.1016/j.addr.2020.07.022
  • FireA, XuS, MontgomeryMK, KostasSA, DriverSE, MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi:10.1038/358889486653
  • ElbashirSM, LendeckelW, TuschlT. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200. doi:10.1101/gad.86230111157775
  • KulkarniJA, WitzigmannD, ChenS, CullisPR, van der MeelR. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–2444. doi:10.1021/acs.accounts.9b0036831397996
  • GavrilovK, SaltzmanWM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. 2012;85(2):187–200.22737048
  • AkincA, MaierMA, ManoharanM, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14(12):1084–1087. doi:10.1038/s41565-019-0591-y31802031
  • AkbabaH, Erel-AkbabaG, KotmakM, BaspinarY. Enhanced cellular uptake and gene silencing activity of survivin-siRNA via ultrasound-mediated nanobubbles in lung cancer cells. Pharm Res. 2020;37(8):165. doi:10.1007/s11095-020-02885-x32761250
  • BaspinarY, Erel-AkbabaG, KotmakM, AkbabaH. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int J Pharm. 2019;566:149–156. doi:10.1016/j.ijpharm.2019.05.03931129344
  • DongH, YaoL, BiW, WangF, SongW, LvY. Combination of survivin siRNA with neoadjuvant chemotherapy enhances apoptosis and reverses drug resistance in breast cancer MCF-7 cells. J Cancer Res Ther. 2015;11(4):717–722. doi:10.4103/0973-1482.14776426881507
  • ElzoghbyAO, SamyWM, ElgindyNA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–182. doi:10.1016/j.jconrel.2011.07.03121839127
  • BhushanB, KhanadeevV, KhlebtsovB, KhlebtsovN, GopinathP. Impact of albumin based approaches in nanomedicine: imaging, targeting and drug delivery. Adv Colloid Interface Sci. 2017;246:13–39. doi:10.1016/j.cis.2017.06.01228716187
  • WilsonB, AmbikaTV, PatelRD, JenitaJL, PriyadarshiniSR. Nanoparticles based on albumin: preparation, characterization and the use for 5-flurouracil delivery. Int J Biol Macromol. 2012;51(5):874–878. doi:10.1016/j.ijbiomac.2012.07.01422820011
  • RuanC, LiuL, LuY, et al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B. 2018;8(1):85–96. doi:10.1016/j.apsb.2017.09.00829872625
  • SleepD. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015;12(5):793–812. doi:10.1517/17425247.2015.99331325518870
  • KratzF. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–183. doi:10.1016/j.jconrel.2008.05.01018582981
  • ArnedoA, EspuelasS, IracheJM. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm. 2002;244(1–2):59–72. doi:10.1016/S0378-5173(02)00300-912204565
  • LiL, ZhaoX, YangC, HuH, QiaoM, ChenD. Preparation and optimization of doxorubicin-loaded albumin nanoparticles using response surface methodology. Drug Dev Ind Pharm. 2011;37(10):1170–1180. doi:10.3109/03639045.2011.56378121449822
  • TsaiS, TingY. Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: a novel and versatile approach. Food Res Int. 2019;116:1163–1172. doi:10.1016/j.foodres.2018.11.04730716902
  • YangY, FengJF, ZhangH, LuoJY. Optimization preparation of chansu-loaded solid lipid nanoparticles by central composite design and response surface method. Zhongguo Zhong Yao Za Zhi. 2006;31(8):650–653.16830822
  • LiuM, ChenJH, DongFR, LiuY. Optimized preparation of ginkgolides A and B long-circulating solid lipid nanoparticles by central composite design and response surface method. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(5):700–703.18504183
  • DingL, LiuL, XuD. Optimized preparation of dry powder inhalation of Rehmannia glutinosa oligosaccharides by central composite design and response surface method. Zhongguo Zhong Yao Za Zhi. 2009;34(24):3203–3206.20353000
  • IracheJM, MerodioM, ArnedoA, CamapaneroMA, MirshahiM, EspuelasS. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem. 2005;5(3):293–305. doi:10.2174/138955705317533515777263
  • ChoiJH, HwangHJ, ShinSW, ChoiJW, UmSH, OhBK. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy. Nanoscale. 2015;7(20):9229–9237. doi:10.1039/C5NR00211G25928110
  • SongCX, ChenHM, DaiY, KangM, HuJ, DengY. Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology. Zhong Yao Cai. 2014;37(11):2082–2086.26027134
  • NicolásP, LassalleVL, FerreiraML. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzyme Microb Technol. 2017;97:97–103. doi:10.1016/j.enzmictec.2016.11.00928010778
  • ArnedoA, CampaneroMA, EspuelasS, RenedoMJ, IracheJM. Determination of oligonucleotide ISIS 2922 in nanoparticulate delivery systems by capillary zone electrophoresis. J Chromatogr A. 2000;871(1–2):311–320. doi:10.1016/S0021-9673(99)01193-010735311
  • MehtaA, Dalle VedoveE, IsertL, MerkelOM. Targeting KRAS mutant lung cancer cells with siRNA-loaded bovine serum albumin nanoparticles. Pharm Res. 2019;36(9):133. doi:10.1007/s11095-019-2665-931289919
  • WangX, SunQ, CuiC, LiJ, WangY. Anti-HER2 functionalized graphene oxide as survivin-siRNA delivery carrier inhibits breast carcinoma growth in vitro and in vivo. Drug Des Devel Ther. 2018;12:2841–2855. doi:10.2147/DDDT.S169430
  • SunQ, WangX, CuiC, LiJ, WangY. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Int J Nanomedicine. 2018;13:3713–3728. doi:10.2147/IJN.S16293929983564
  • BiY, ZhangY, CuiC, RenL, JiangX. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7. Int J Nanomedicine. 2016;11:5771–5787. doi:10.2147/IJN.S11761127853365
  • LiJ, GeX, CuiC, et al. Preparation and characterization of functionalized graphene oxide carrier for siRNA delivery. Int J Mol Sci. 2018;19(10):3202. doi:10.3390/ijms19103202
  • CuiC, WangY, ZhaoW, et al. RGDS covalently surfaced nanodiamond as a tumor targeting carrier of VEGF-siRNA: synthesis, characterization and bioassay. J Mater Chem B. 2015;3(48):9260–9268. doi:10.1039/C5TB01602A32262925
  • SonS, SongS, LeeSJ, et al. Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials. 2013;34(37):9475–9485. doi:10.1016/j.biomaterials.2013.08.08524050874
  • YangT, LiB, QiS, et al. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014;4(11):1096–1111. doi:10.7150/thno.942325285163
  • ArnedoA, IracheJM, MerodioM, Espuelas MillánMS. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. J Control Release. 2004;94(1):217–227. doi:10.1016/j.jconrel.2003.10.00914684285
  • WangH, YeYF. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells. Asian Pac J Trop Med. 2015;8(3):225–228. doi:10.1016/S1995-7645(14)60320-525902166
  • LarsenMT, KuhlmannM, HvamML, HowardKA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3. doi:10.1186/s40591-016-0048-826925240
  • ParodiA, MiaoJ, SoondSM, RudzińskaM, ZamyatninAA. Albumin nanovectors in cancer therapy and imaging. Biomolecules. 2019;9(6):218. doi:10.3390/biom9060218
  • KandavG, BhattDC, JindalDK, SinghSK. Formulation, optimization, and evaluation of allopurinol-loaded bovine serum albumin nanoparticles for targeting kidney in management of hyperuricemic nephrolithiasis: formulation, optimization, and evaluation of ABNPs for kidney targeting. AAPS PharmSciTech. 2020;21(5):164. doi:10.1208/s12249-020-01695-z32488630
  • LangerK, BalthasarS, VogelV, DinauerN, von BriesenH, SchubertD. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257(1–2):169–180. doi:10.1016/S0378-5173(03)00134-012711172
  • LangerK, AnhornMG, SteinhauserI, et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm. 2008;347(1–2):109–117. doi:10.1016/j.ijpharm.2007.06.02817681686
  • LiuX, MohantyRP, MaierEY, et al. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J Control Release. 2020;328:1–12. doi:10.1016/j.jconrel.2020.08.01532798638
  • LoureiroA, AzoiaNG, GomesAC, Cavaco-PauloA. Albumin-based nanodevices as drug carriers. Curr Pharm Des. 2016;22(10):1371–1390. doi:10.2174/138161282266616012511490026806342
  • LomisN, WestfallS, FarahdelL, MalhotraM, Shum-TimD, PrakashS. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016;6(6):116. doi:10.3390/nano6060116
  • TarhiniM, PizzoccaroA, BenlyamaniI, et al. Human serum albumin nanoparticles as nanovector carriers for proteins: application to the antibacterial proteins “neutrophil elastase” and “secretory leukocyte protease inhibitor”. Int J Pharm. 2020;579:119–150. doi:10.1016/j.ijpharm.2020.119150
  • YogasundaramH, BahniukMS, SinghHD, AliabadiHM, UludağH, UnsworthLD. BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater. 2012;2012:1–10. doi:10.1155/2012/584060
  • ElsadekB, KratzF. Impact of albumin on drug delivery–new applications on the horizon. J Control Release. 2012;157(1):4–28. doi:10.1016/j.jconrel.2011.09.06921959118
  • SinghHD, WangG, UludaH, UnsworthLD. Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. Acta Biomater. 2010;6(11):4277–4284. doi:10.1016/j.actbio.2010.06.01720601248