354
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Characterization of Oxygenated Heterocyclic Compounds and in vitro Antioxidant Activity of Pomelo Essential Oil

ORCID Icon, , , , &
Pages 937-947 | Published online: 02 Mar 2021

References

  • SunH, NiH, YangY, ChenF, CaiH, XiaoA. Sensory evaluation and gas chromatography-mass spectrometry (GC-MS) analysis of the volatile extracts of pummelo (Citrus maxima) peel. Flav Frag J. 2014;29(5):305–312. doi:10.1002/ffj.3206
  • OuMC, LiuYH, SunYW, ChanCF. The composition, antioxidant and antibacterial activities of cold-pressed and distilled essential oils of Citrus paradisi and Citrus grandis (L.) osbeck. Evid Based Complement Alternat Med. 2015;2015:804091. doi:10.1155/2015/80409126681970
  • SettanniL, PalazzoloE, GuarrasiV, et al. Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control. 2012;26(2):326–330. doi:10.1016/j.foodcont.2012.01.050
  • SinghP, ShuklaR, PrakashB, et al. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima burm. and Citrus sinensis (L.) osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol. 2010;48(6):1734–1740. doi:10.1016/j.fct.2010.04.00120385194
  • HeWY, LiXY, PengY, HeXY, PanSY. Anti-oxidant and anti-melanogenic properties of essential oil from peel of pomelo cv. Guan Xi. Molecules. 2019;24(2):13.
  • HariyaT. The possibility of regulating the function of adipose cells by odorants. Aroma Res. 2003;13:72–78.
  • DugoG, CotroneoA, BonaccorsiI, RestucciaM. The composition of the volatile fraction of peel oils. In: DugoG, BonaccorsiI, editors. Citrus Bergamia - Bergamot and Its Derivatives. Boca Raton, FL: CRC Press; 2019:115–225.
  • Haro-GuzmánL. Composition of distilled oils. In: Giovanni dugoLM, editor. Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants, and Biological Activity. Vol 49. 1st ed. Boca Raton, FL: Taylor & Francis Group; 2011:193–217.
  • NjorogeSM, KoazeH, KaranjaPN, SawamuraM. Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oils from Kenya. J Agric Food Chem. 2005;53(25):9790–9794. doi:10.1021/jf051373s16332132
  • Minh tuNT, ThanhLX, UneA, UkedaH, SawamuraM. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flav Frag J. 2002;17(3):169–174. doi:10.1002/ffj.1076
  • SawamuraM, ShichiriK-I, OotaniY, ZhengXH. Volatile constituents of several varieties of pummelos and characteristics among citrus species. Agric Biol Chem. 1991;55(10):2571–2578.
  • GohRMV, PuaA, LiuSQ, et al. Characterisation of volatile and non-volatile compounds in pomelo by gas chromatography-olfactometry, gas chromatography and liquid chromatography-quadrupole time-of-flight mass spectrometry. J Essent Oil Res. 2020;32(2):132–143. doi:10.1080/10412905.2019.1677272
  • MondelloL, DugoP, CavazzaA, DugoG. Characterization of essential oil of pummelo (cv. Chandler) by GC/MS, HPLC and physicochemical indices. J Essent Oil Res. 1996;8(3):311–314. doi:10.1080/10412905.1996.9700622
  • DugoP, RussoM. The oxygen heterocyclic components of citrus essential oils. In: Giovanni dugoLM, editor. Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants, and Biological Activity. Vol 49. New York: CRC Press; 2010:405–444.
  • FayekNM, FaragMA, Abdel MonemAR, MoussaMY, Abd-ElwahabSM, El-TanboulyND. Comparative metabolite profiling of four citrus peel cultivars via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry and multivariate data analyses. J Chromatogr Sci. 2019;57(4):349–360. doi:10.1093/chromsci/bmz00630796772
  • LiG, TanF, ZhangQ, et al. Protective effects of polymethoxyflavone-rich cold-pressed orange peel oil against ultraviolet B-induced photoaging on mouse skin. J Funct Foods. 2020;67:103834. doi:10.1016/j.jff.2020.103834
  • ValkoM, LeibfritzD, MoncolJ, CroninMTD, MazurM, TelserJ. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.16978905
  • Mutlu-IngokA, DeveciogluD, DikmetasDN, Karbancioglu-GulerF, CapanogluE. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules. 2020;25(20):4711. doi:10.3390/molecules25204711
  • AmoratiR, FotiMC, ValgimigliL. Antioxidant Activity of Essential Oils. J Agric Food Chem. 2013;61(46):10835–10847. doi:10.1021/jf403496k24156356
  • Diniz Do NascimentoL, Barbosa de MoraesAA, Santana da CostaK, et al. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: new findings and potential applications. Biomolecules. 2020;10(7):988. doi:10.3390/biom10070988
  • Nguyen Thi LanP, Pham VanH, Pham Thi LanC, Nguyen HoangD. Impact of extraction methods on antioxidant and antimicrobial activities of citrus essential oils. J Essent Oil Bear Pl. 2015;18(4):806–817. doi:10.1080/0972060X.2014.977565
  • WuZ, LiH, LuoY, et al. Insights into the structural characterisations, bioactivities and their correlations with water-soluble polysaccharides extracted from different pomelo (Citrus maxima Merr.) tissues. Int J Food Sci Technol. 2020;55(9):3091–3103. doi:10.1111/ijfs.14573
  • LiG-J, WangJ, ChengY-J, et al. Prophylactic effects of polymethoxyflavone-rich orange peel oil on Nω-Nitro-L-Arginine-induced hypertensive rats. Appl Sci. 2018;8(5):752. doi:10.3390/app8050752
  • ChenY, WuJ, XuY, FuM, XiaoG. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis). J Agric Food Chem. 2014;62(35):8786–8790. doi:10.1021/jf501079r24945493
  • LiG-J, WuH-J, WangY, HungW-L, RouseffRL. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection. Food Chem. 2019;271:29–38. doi:10.1016/j.foodchem.2018.07.13030236679
  • AbrahamJ. Proceedings of the international conference on harmonization (ICH) of technical requirements for registration of pharmaceuticals or human use. In: Tietje C, Brouder A, editors. Handbook of Transnational Economic Governance Regimes. Leiden: Martinus Nijhoff Publishers; 1996:1041–1053.
  • BenzieIFF, StrainJJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Packer L, editor. Methods in Enzymology. Vol 299. San Diego: Academic Press; 1999: 15–27.
  • Brand-WilliamsW, CuvelierME, BersetC. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30. doi:10.1016/S0023-6438(95)80008-5
  • DuZ-X, ZhangY, SunY, GongS-Z. DPPH free radical scavenging and antimicrobial activity of the essential oil of pomelo peel. Flav Fragr Cosmet. 2017;(01):39–41+45.
  • LiX. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO•) radical scavenging: a new and simple antioxidant assay in vitro. J Agric Food Chem. 2017;65(30):6288–6297. doi:10.1021/acs.jafc.7b0224728689421
  • BoccoA, CuvelierME, RichardH, BersetC. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem. 1998;46(6):2123–2129. doi:10.1021/jf9709562
  • ZhangMX, DuanCQ, ZangYY, HuangZW, LiuGJ. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chem. 2011;129(4):1530–1536. doi:10.1016/j.foodchem.2011.05.136
  • DugoP, RussoM. The oxygen heterocyclic components of citrus essential oils. In: DugoG, MondelloL, editors. Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants, and Biological Activity. Vol 49. 1st ed. Boca Raton, FL: Taylor & Francis Group; 2011:193–217.
  • ChristensenLP. Chapter 29 - Polyphenols and polyphenol-derived compounds from plants and contact dermatitis. In: WatsonRR, PreedyVR, ZibadiS, editors. Polyphenols: Prevention and Treatment of Human Disease. 2nd ed. Academic Press; 2018:349–384.
  • MesserA, RaquetN, LohrC, SchrenkD. Major furocoumarins in grapefruit juice II: phototoxicity, photogenotoxicity, and inhibitory potency vs. cytochrome P450 3A4 activity. Food Chem Toxicol. 2012;50(3–4):756–760. doi:10.1016/j.fct.2011.11.02322155270
  • NaganumaM, HiroseS, NakayamaY, NakajimaK, SomeyaT. A study of the phototoxicity of lemon oil. Arch Dermatol Res. 1985;278(1):31–36. doi:10.1007/BF004124924096528
  • SunW, RiceMS, ParkMK, et al. Intake of furocoumarins and risk of skin cancer in 2 prospective US cohort studies. J Nutr. 2020;150(6):1535–1544. doi:10.1093/jn/nxaa06232221600
  • ChoiH-S, SongHS, UkedaH, SawamuraM. Radical-scavenging activities of citrus essential oils and their components:  detection using 1,1-diphenyl-2-picrylhydrazyl. J Agric Food Chem. 2000;48(9):4156–4161. doi:10.1021/jf000227d10995330
  • NaseriM, Monsef-EsfehaniHR, SaeidniaS, DastanD, GohariAR. Antioxidative coumarins from the roots of Ferulago subvelutina. Asian J Chem. 2013;25(4):1875–1878. doi:10.14233/ajchem.2013.13208
  • de AlmeidaAAC, de CarvalhoRBF, SilvaOA, de SousaDP, de FreitasRM. Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacol Biochem Behav. 2014;118:69–78. doi:10.1016/j.pbb.2014.01.00624463201
  • GurakPD, MercadanteAZ, González-MiretML, HerediaFJ, Meléndez-MartínezAJ. Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives. Food Chem. 2014;147:160–169. doi:10.1016/j.foodchem.2013.09.10624206700
  • StobieckaA. Comparative study on the free radical scavenging mechanism exerted by geraniol and geranylacetone using the combined experimental and theoretical approach. Flav Fragr J. 2015;30(5):399–409. doi:10.1002/ffj.3256
  • LeNT, DonaduMG, HoDV, et al. Biological activities of essential oil extracted from leaves of Atalantia sessiflora Guillauminin Vietnam. J Infect Dev Ctries. 2020;14(9):1054–1064. doi:10.3855/jidc.1246933031096
  • BaracA, DonaduM, UsaiD, et al. Correction to: antifungal activity of Myrtus communis against Malassezia sp. isolated from the skin of patients with pityriasis versicolor. Infection. 2018;46(2):287. doi:10.1007/s15010-017-1104-229294237
  • DonaduMG, Trong LeN, Viet hoD, et al. Phytochemical compositions and biological activities of essential oils from the leaves, rhizomes and whole plant of Hornstedtia bella Škorničk. Antibiotics. 2020;9(6):334. doi:10.3390/antibiotics9060334
  • DonaduM, UsaiD, PinnaA, et al. In vitro activity of hybrid lavender essential oils against multidrug resistant strains of Pseudomonas aeruginosa. J Infect Dev Ctries. 2018;12(1):9–14. doi:10.3855/jidc.992031628828
  • DonaduMG, UsaiD, MarchettiM, et al. Antifungal activity of oils macerates of North Sardinia plants against candida species isolated from clinical patients with candidiasis. Nat Prod Res. 2020;34(22):3280–3284. doi:10.1080/14786419.2018.155717530676066
  • SardariS, NishibeS, DaneshtalabM. Coumarins, the bioactive structures with antifungal property. Stud Nat Prod Chem. 2000;23:335–393.
  • KayserO, KolodziejH. Antibacterial activity of simple coumarins: structural requirements for biological activity. Z Naturforsch C. 1999;54(3–4):169–174. doi:10.1515/znc-1999-3-40510349736