423
Views
14
CrossRef citations to date
0
Altmetric
Review

Chemistry, Pharmacology and Therapeutic Potential of Swertiamarin – A Promising Natural Lead for New Drug Discovery and Development

, ORCID Icon, ORCID Icon, ORCID Icon, , , , & show all
Pages 2721-2746 | Published online: 21 Jun 2021

References

  • BonamSR, WuYS, TunkiL, et al. What has come out from phytomedicines and herbal edibles for the treatment of cancer? Chem Med Chem. 2018;13(18):1854–1872. doi:10.1002/cmdc.20180034329927521
  • RamakrishnanP, LohWM, GopinathSC, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020;10(3):399–413. doi:10.1016/j.apsb.2019.11.00832140388
  • AnwarMMA, AftabK, AftabK, AftabK. Enicostema littorale: a new source of swertiamarin. Pak J Pharm Sci. 1996;9(1):29–35.16414773
  • SaranyaR, ThirumalaiT, HemalathaM, et al. Pharmacognosy of Enicostemma littorale: a review. Asian Pac J Trop Biomed. 2013;3(1):79–84. doi:10.1016/S2221-1691(13)60028-323570022
  • JaishreeV, BadamiS. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J Ethnopharmacol. 2010;130(1):103–106. doi:10.1016/j.jep.2010.04.01920420896
  • MarooJ, VasuV, GuptaS. Dose dependent hypoglycemic effect of aqueous extract of Enicostemma littorale Blume in alloxan induced diabetic rats. Phytomedicine. 2003;10(2–3):196–199. doi:10.1078/09447110332165993312725576
  • PiatczakE, KrolickaA, WysokinskaH. Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep. 2006;25(12):1308–1315. doi:10.1007/s00299-006-0155-016841219
  • AbeN, NakanoY, ShimogomiA, et al. A new flavonol triglycoside from Eustoma grandiflorum. Nat Prod Commun. 2016;11(7):963–964.30452172
  • JonvilleM-C, CapelM, FrédérichM, et al. Fagraldehyde, a secoiridoid isolated from Fagraea fragrans. J Nat Prod. 2008;71(12):2038–2040. doi:10.1021/np800291d19053508
  • TanR, HuJ, DongL, et al. Two new secoiridoid glycosides from Gentiana algida. Planta Med. 1997;63(06):567–569. doi:10.1055/s-2006-95777017252380
  • ZhouL, LiX-K, MiaoF, et al. Further studies on the chemical constituents of Chinese folk medicine Gentiana apiata NE Br. J Asian Nat Prod Res. 2009;11(4):345–351. doi:10.1080/1028602090281981419431015
  • MihailovicV, MaticS, MišicD, et al. Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract. EXCLI J. 2013;12:807.26622219
  • WangaY, AhmadcB, DuanaB, et al. Chemical and genetic comparative analysis of Gentiana crassicaulis and Gentiana. Chem Biodivers. 2016;13:1–6. doi:10.1002/cbdv.20140036326765349
  • MihailovićV, KatanićJ, MišićD, et al. Hepatoprotective effects of secoiridoid-rich extracts from Gentiana cruciata L. against carbon tetrachloride induced liver damage in rats. Food Funct. 2014;5(8):1795–1803. doi:10.1039/C4FO00088A24912992
  • WuX, TangS, JinY, et al. New analytical method for the study of metabolism of swertiamarin in rats after oral administration by UPLC‐TOF‐MS following DNPH derivatization. Biomed Chromatogr. 2015;29(8):1184–1189. doi:10.1002/bmc.340625612327
  • ChuehF-S, Chen-C-C, SagareAP, et al. Quantitative determination of secoiridoid glucosides in in vitro propagated plants of Gentiana davidii var. formosana by high performance liquid chromatography. Planta Med. 2001;67(1):70–73. doi:10.1055/s-2001-1062211270726
  • Çalişİ, RüeggerH, ChunZ, et al. Secoiridoid glucosides isolated from Gentiana gelida. Planta Med. 1990;56(4):406–409. doi:10.1055/s-2006-96099517221438
  • GhazanfarK, MubashirK, DarSA, et al. Gentiana kurroo Royle attenuates the metabolic aberrations in diabetic rats; Swertiamarin, swertisin and lupeol being the possible bioactive principles. J Complement Integr Med. 2017;14(3):3. doi:10.1515/jcim-2017-0002
  • ZhangX, ZhangH, JiL. Simultaneous determination of four constituents in wild Gentiana lawrencei from Qinghai province by RP-HPLC. China J Chinese Mat Med. 2009;34(22):2884–2886.
  • KesavanR, PotunuruUR, NastasijevićB, et al. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One. 2013;8(4):e61393. doi:10.1371/journal.pone.006139323637826
  • ZhangJ, TianZ, LouZ. Simultaneous determination of five bitter secoiridoid glycosides in nine Chinese Gentiana species used as the Chinese drug ”long dan” by high performance liquid chromatography. Acta Pharm Sin. 1991;26(11):864–870.
  • SuyamaY, KurimotoS-I, KawazoeK, et al. Rigenolide A, a new secoiridoid glucoside with a cyclobutane skeleton, and three new acylated secoiridoid glucosides from Gentiana rigescens Franch. Fitoterapia. 2013;91:166–172. doi:10.1016/j.fitote.2013.08.00623994629
  • KshirsagarPR, PaiSR, NimbalkarMS, et al. RP-HPLC analysis of seco-iridoid glycoside swertiamarin from different Swertia species. Nat Prod Res. 2016;30(7):865–868. doi:10.1080/14786419.2015.107136626299409
  • LuoY, NieR. Studies on iridoid glycosides from Swertia angustifolia. Acta Pharm Sin. 1992;27(2):125.
  • LadH, BhatnagarD. Amelioration of oxidative and inflammatory changes by Swertia chirayita leaves in experimental arthritis. Inflammopharmacology. 2016;24(6):363–375. doi:10.1007/s10787-016-0290-327738917
  • MahendranG, ThamotharanG, SengottuveluS, et al. RETRACTED: anti-diabetic activity of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke aerial parts extract in streptozotocin induced diabetic rats. J Ethnopharmacol. 2014;151(3):1175–1183. doi:10.1016/j.jep.2013.12.03224378350
  • CaoT-W, GengC-A, MaY-B, et al. Chemical constituents of Swertia mussotii and their anti-hepatitis B virus activity. Fitoterapia. 2015;102:15–22. doi:10.1016/j.fitote.2015.01.02025665940
  • Wang-S-S, ZhaoW-J, HanX-W, et al. Two new iridoid glycosides from the Tibetan folk medicine Swertia franchetiana. Chem Pharm Bull. 2005;53(6):674–676. doi:10.1248/cpb.53.674
  • JiangFQ, ZhangXM, MaY, et al. Chemical constituents of Swertia hispidicalyx. J Chinese Mat Med. 2011;36(16):2215–2218.
  • RaiA, NakamuraM, TakahashiH, et al. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Plant Cell Rep. 2016;35(10):2091–2111. doi:10.1007/s00299-016-2021-z27378356
  • HeK, CaoTW, WangHL, et al. Chemical constituents of Swertia kouitchensis Franch. China J Chinese Mat Med. 2015;40(19):3811–3817.
  • SaeidniaS, AraL, HajimehdipoorH, et al. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity. Res Pharm Sci. 2016;11(1):23.27051429
  • KikuzakiH, KawasakiY, KitamuraS, et al. Secoiridoid Glucosides from Swertia mileensis. Planta Med. 1996;62(01):35–38. doi:10.1055/s-2006-9577928720386
  • TianC, ZhangT, WangL, et al. The hepatoprotective effect and chemical constituents of total iridoids and xanthones extracted from Swertia mussotii Franch. J Ethnopharmacol. 2014;154(1):259–266. doi:10.1016/j.jep.2014.04.01824746481
  • HeK, CaoT, WangH, et al. Chemical constituents of Swertia patens. China J Chinese Mat Med. 2015;40(20):4012.
  • HuangW-Z, XuC-H, ZhouD-C, et al. Determination of iridoids and triterpenes in herb of Swertia pseudochinesis by RP-HPLC. China J Chinese Mat Med. 2007;32(23):2494–2496.
  • TanP, LiuY, HouC. Swertiapunimarin from Swertia punicea Hemsl. Acta Pharm Sin. 1993;28(7):522–525.
  • NwaforPA, AbiaGO, BankhedeHK. Antipyretic and antimalarial activities of crude leaf extract and fractions of Enicostema littorale. Asian Pac J Trop Dis. 2012;2(6):442–447. doi:10.1016/S2222-1808(12)60097-8
  • TakateS, PokharkarR, ChopadeV, et al. Hepatoprotective activity of the ethyl acetate extract of Launaea intybacea (jacq) beauv in paracetamol induced hepato-toxicity in albino rats. Int J Pharm Sci Rev Res. 2010;1(2):72–74.
  • PatelN, TyagiRK, TandelN, et al. The molecular targets of swertiamarin and its derivatives confer anti-diabetic and anti-hyperlipidemic effects. Curr Drug Targets. 2018;19(16):1958–1967. doi:10.2174/138945011966618040611342829623834
  • JaishreeV, BadamiS, KumarMR, et al. Antinociceptive activity of swertiamarin isolated from Enicostemma axillare. Phytomedicine. 2009;16(2–3):227–232. doi:10.1016/j.phymed.2008.09.01019019644
  • VishwakarmaS, RajaniM, BagulM, et al. A rapid method for the isolation of swertiamarin from Enicostemma littorale. Pharm Biol. 2004;42(6):400–403. doi:10.1080/13880200490885095
  • KakarlaRK, RajendranM, PaulrajB, et al. Isolation and characterization of Swertiamarin from aerial parts of Enicostemma littorale Blume. Int J Bioassays. 2019;8(1):5712–5715.
  • RanaV. Separation and identification of swertiamarin from Enicostema axillare Lam. raynal by centrifugal partition chromatography and nuclear magnetic resonance-mass spectrometry. J Pharm Sci Emerg Drugs. 2014;1:2.
  • NIH. Swertiamarin. Vol. 2020. 2020.
  • LipinskiCA, LombardoF, DominyBW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1
  • MiettinenK, DongL, NavrotN, et al. The seco-iridoid pathway from Catharanthus roseus. Nat Commun. 2014;5(1):1–12.
  • OudinA, MahrougS, CourdavaultV, et al. Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol. 2007;65(1–2):13–30. doi:10.1007/s11103-007-9190-717611800
  • Loyola-VargasVM, Galaz-ávalosRM, Kú-CauichR. Catharanthus biosynthetic enzymes: the road ahead. Phytochem Rev. 2007;6(2):307–339. doi:10.1007/s11101-007-9064-2
  • ColluG, UnverN, Peltenburg-LoomanAM, et al. Geraniol 10-hydroxylase 1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001;508(2):215–220. doi:10.1016/S0014-5793(01)03045-911718718
  • IrmlerS, SchröderG, St‐PierreB, et al. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 2000;24(6):797–804. doi:10.1046/j.1365-313x.2000.00922.x11135113
  • MurataJ, RoepkeJ, GordonH, et al. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell. 2008;20(3):524–542. doi:10.1105/tpc.107.05663018326827
  • ZhuX, ZengX, SunC, et al. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med. 2014;8(3):285–293. doi:10.1007/s11684-014-0350-225159992
  • ZhangM, MaX, XuH, et al. A natural AKT inhibitor swertiamarin targets AKT‐PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J. 2020;287(9):1816–1829. doi:10.1111/febs.1511231665825
  • SaravananS, IslamVH, BabuNP, et al. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur J Pharm Sci. 2014;56:70–86. doi:10.1016/j.ejps.2014.02.00524582615
  • SaravananS, IslamVH, ThirugnanasambanthamK, et al. Swertiamarin ameliorates inflammation and osteoclastogenesis intermediates in IL-1β induced rat fibroblast-like synoviocytes. Inflamm Res. 2014;63(6):451–462. doi:10.1007/s00011-014-0717-524492951
  • SaravananS, PandikumarP, BabuNP, et al. In vivo and in vitro immunomodulatory potential of swertiamarin isolated from Enicostema axillare (Lam.) A. Raynal that acts as an anti-inflammatory agent. Inflammation. 2014;37(5):1374–1388. doi:10.1007/s10753-014-9862-924736879
  • Hairul-IslamM, SaravananS, ThirugnanasambanthamK, et al. Swertiamarin, a natural steroid, prevent bone erosion by modulating RANKL/RANK/OPG signaling. Int Immunopharmacol. 2017;53:114–124. doi:10.1016/j.intimp.2017.10.02229078090
  • VaijanathappaJ, BadamiS. Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med. 2009;75(01):12–17. doi:10.1055/s-0028-108833319006050
  • YangY, LiJ, WeiC, et al. Amelioration of nonalcoholic fatty liver disease by swertiamarin in fructose-fed mice. Phytomedicine. 2019;59:152782. doi:10.1016/j.phymed.2018.12.00531005808
  • ZhangQ, ChenK, WuT, et al. Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats. Korean J Physiol Pharmacol. 2019;23(1):21–28. doi:10.4196/kjpp.2019.23.1.2130627006
  • WuT, LiJ, LiY, et al. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell Physiol Biochem. 2017;41(6):2242–2254. doi:10.1159/00047563928448964
  • LiS, WangQ, TaoY, et al. Swertiamarin attenuates experimental rat hepatic fibrosis by suppressing angiotensin II–angiotensin type 1 receptor–extracellular signal-regulated kinase signaling. J Pharmacol Exp Ther. 2016;359(2):247–255. doi:10.1124/jpet.116.23417927543328
  • PhobooS, PintoMDS, BarbosaACL, et al. Phenolic‐linked biochemical rationale for the antidiabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytother Res. 2013;27(2):227–235. doi:10.1002/ptr.471422523004
  • WaniBA, RamamoorthyD, RatherMA, et al. Induction of apoptosis in human pancreatic MiaPaCa-2 cells through the loss of mitochondrial membrane potential (ΔΨm) by Gentiana kurroo root extract and LC-ESI-MS analysis of its principal constituents. Phytomedicine. 2013;20(8–9):723–733. doi:10.1016/j.phymed.2013.01.01123453831
  • VaidyaH, GoyalRK, CheemaSK. Antidiabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR‐γ gene expression in 3T3‐L1 cells. Phytother Res. 2013;27(4):624–627. doi:10.1002/ptr.476322718571
  • VaidyaH, GiriS, JainM, et al. Decrease in serum matrix metalloproteinase-9 and matrix metalloproteinase-3 levels in Zucker fa/fa obese rats after treatment with swertiamarin. Exp Clin Cardiol. 2012;17(1):12.23204894
  • VaidyaH, PrajapatiA, RajaniM, et al. Beneficial effects of swertiamarin on dyslipidaemia in streptozotocin‐induced type 2 diabetic rats. Phytother Res. 2012;26(8):1259–1261. doi:10.1002/ptr.370822228612
  • DhanavathyG. Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas. J Endocrinol Investig. 2015;38(6):669–684. doi:10.1007/s40618-015-0243-525770453
  • PatelTP, SoniS, ParikhP, et al. Swertiamarin: an active lead from Enicostemma littorale regulates hepatic and adipose tissue gene expression by targeting PPAR-γ and improves insulin sensitivity in experimental NIDDM rat model. J Evid Based Complementary Altern Med. 2013;2013.
  • SonawaneRD, VishwakarmaSL, LakshmiS, et al. Amelioration of STZ-induced type 1 diabetic nephropathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol Cell Biochem. 2010;340(1–2):1–6. doi:10.1007/s11010-010-0393-x20229291
  • AhamadJ, HassanN, AminS, et al. Swertiamarin contributes to glucose homeostasis via inhibition of carbohydrate metabolizing enzymes. J Nat Med. 2016;4:125–130.
  • PatelTP, RawalK, SoniS, et al. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomed Pharmacother. 2016;83:785–791. doi:10.1016/j.biopha.2016.07.02827490779
  • KimuraY, SumiyoshiM. Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice. Fitoterapia. 2011;82(6):827–833. doi:10.1016/j.fitote.2011.04.00821571047
  • YaoL-S, TangL-N, LiuC-Q, et al. Study on protective effect and possible mechanisms of swertiamarin against sepsis-induced acute lung injury in rats. Int J Clin Exp Med. 2016;9(7):13445–13455.
  • PandeyT, SmitaSS, MishraA, et al. Swertiamarin, a secoiridoid glycoside modulates nAChR and AChE activity. Exp Geront. 2020;138:111010. doi:10.1016/j.exger.2020.111010
  • DengX-H, ZhangX, WangJ, et al. Anticonvulsant effect of swertiamarin against Pilocarpine-induced seizures in adult male mice. Neurochem Res. 2017;42(11):3103–3113. doi:10.1007/s11064-017-2347-028681096
  • DevinskyO, VezzaniA, NajjarS, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–184. doi:10.1016/j.tins.2012.11.00823298414
  • VezzaniA, BaramTZ. New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr. 2007;7(2):45–50. doi:10.1111/j.1535-7511.2007.00165.x17505552
  • UludagIF, DuksalT, TiftikciogluBI, et al. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure. 2015;26:22–25. doi:10.1016/j.seizure.2015.01.00925799897
  • VezzaniA, AronicaE, MazaratiA, et al. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21. doi:10.1016/j.expneurol.2011.09.03321985866
  • AlsharafiWA, XiaoB, AbuhamedMM, et al. Correlation between IL-10 and microRNA-187 expression in epileptic rat hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci. 2015;9:466. doi:10.3389/fncel.2015.0046626696826
  • VaijanathappaJ, PuttaswamygowdaJ, BevanhalliR, et al. Molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from Enicostemma axillare. Bioorg Chem. 2020;94:103428. doi:10.1016/j.bioorg.2019.10342831740047
  • WangH, WeiW, LanX, et al. Neuroprotective effect of swertiamain on cerebral ischemia/reperfusion injury by inducing the Nrf2 protective pathway. ACS Chem Neurosci. 2019;10(5):2276–2286. doi:10.1021/acschemneuro.8b0060530753053
  • TangH, KeY, RenZ, et al. Bioinformatics analysis of differentially expressed genes in hepatocellular carcinoma cells exposed to Swertiamarin. J Cancer. 2019;10(26):6526. doi:10.7150/jca.3366631777582
  • DubeyS, KallubaiM, SubramanyamR. Comparative binding of swertiamarin with human serum albumin and α-1 glycoprotein and its cytotoxicity against neuroblastoma cells. J Biomol Struct Dyn. 2019;1–11.
  • ŠilerB, MišićD, NestorovićJ, et al. Antibacterial and antifungal screening of Centaurium pulchellum crude extracts and main secoiridoid compounds. Nat Prod Commun. 2010;5(10):1934578X1000501001.
  • DhanavathyG, JayakumarS. Acute and subchronic toxicity studies of Swertiamarin a lead compound isolated from Enicostemma littorale Blume in wistar rats. Biosci Biotech Res Asia. 2017;14(1):381–390. doi:10.13005/bbra/2456
  • ShiM, XiongK, ZhangT, et al. Pharmacokinetics and metabolic profiles of swertiamarin in rats by liquid chromatography combined with electrospray ionization tandem mass spectrometry. J Pharm Biomed. 2020;179:112997. doi:10.1016/j.jpba.2019.112997
  • LiH-L, HeJ-C, BaiM, et al. Determination of the plasma pharmacokinetic and tissue distributions of swertiamarin in rats by liquid chromatography with tandem mass spectrometry. Drug Res. 2012;62(03):138–144.
  • XuG-L, LiH-L, HeJ-C, et al. Comparative pharmacokinetics of swertiamarin in rats after oral administration of swertiamarin alone, Qing Ye Dan tablets and co-administration of swertiamarin and oleanolic acid. J Ethnopharmacol. 2013;149(1):49–54. doi:10.1016/j.jep.2013.05.01623791808
  • BezivinC. Cosmetic uses of swertiamarin. Google Patents. 2017.
  • Muhamad IbrahimA, NagarajanA, MajeedM. Swertiamarin ointment: a traditional approach in cutaneous wound healing. Asian J Pharm Pharmacol. 2019;5(2):298–309. doi:10.31024/ajpp.2019.5.2.13
  • KumarS, NiguramP, BhatV, et al. Synthesis, molecular docking and ADMET prediction of novel swertiamarin analogues for the restoration of type-2 diabetes: an enzyme inhibition assay. Nat Prod Res. 2020;1–11.
  • BhattJ, VaidyaH, KhannaV, et al. In silico docking studies for designing potent anti-diabetic derivatives of swertiamarin with enzyme HMG COA reductase. Mol Cytogenet. 2014;7(1):1. doi:10.1186/1755-8166-7-S1-P9724387276
  • ZhangM-Q, WilkinsonB. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007;18(6):478–488. doi:10.1016/j.copbio.2007.10.00518035532