119
Views
3
CrossRef citations to date
0
Altmetric
Original Research

High-Dose Dexmedetomidine Promotes Apoptosis in Fetal Rat Hippocampal Neurons

, , ORCID Icon, , & ORCID Icon
Pages 2433-2444 | Published online: 08 Jun 2021

References

  • HansenTG, PedersenJK, HennebergSW, et al. Academic performance in adolescence after inguinal hernia repair in infancy: a Nationwide Cohort Study. Anesthesiology. 2011;114:1076–1085. doi:10.1097/ALN.0b013e31820e77a021368654
  • KoWR, LiawY, HuangJ, et al. Exposure to general anesthesia in early life and the risk of attention deficit/hyperactivity disorder development: a Nationwide, Retrospective Matched-Cohort Study. Paediatr Anaesth. 2014;24:741–748. doi:10.1111/pan.1237124612161
  • ShuklaA, ChowdharyV. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (Gas): an international, multicentre, randomised, controlled equivalence trial. Acta Paediatr. 2019;108:2115–2116. doi:10.1111/apa.1494331418482
  • SunLS, LiG, MillerTLK, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315(21):2312–2320. doi:10.1001/jama.2016.696727272582
  • BlockRI, ThomasJJ, BaymanEO, ChoiJY, KimbleKK, ToddMM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood. Anesthesiology. 2012;117:494–503. doi:10.1097/ALN.0b013e318264468422801049
  • FlickRP, KatusicSK, ColliganRC, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128(5):e1053–e1061. doi:10.1542/peds.2011-035121969289
  • LngCH, DimaggioCJ, MalacovaE, et al. Comparative analysis of outcome measures used in examining neurodevelopmental effects of early childhood anesthesia exposure. Surv Anesthesiol. 2015;59(1):33–34. doi:10.1097/01.SA.0000459242.59331.b6
  • WilderRT, FlickR, SprungJ, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110(4):796–804. doi:10.1097/01.anes.0000344728.34332.5d19293700
  • HaydenJC, BreatnachC, DohertyDR, et al. Efficacy of Α2-agonists for sedation in pediatric critical care: a systematic review. Pediatr Crit Care Med. 2016;17(2):e66–e75. doi:10.1097/PCC.000000000000059926704469
  • MahmoudM, MasonKP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115(2):171–182. doi:10.1093/bja/aev22626170346
  • RobackMG, CarlsonDW, BablFE, KennedyRM. Update on pharmacological management of procedural sedation for children. Curr Opin Anaesthesiol. 2016;29(Supplement 1):S21–S35. doi:10.1097/ACO.000000000000031626926332
  • LeeJ-R, LinEP, HofacerRD, et al. Alternative technique or mitigating strategy for sevoflurane-induced neurodegeneration: a Randomized Controlled Dose-Escalation Study of Dexmedetomidine in neonatal rats. Br J Anaesth. 2017;119(3):492–505. doi:10.1093/bja/aex21928969315
  • LiuJ-R, YukiK, BaekC, HanX-H, SorianoSG. Dexmedetomidine-induced neuroapoptosis is dependent on its cumulative dose. Anesth Analg. 2016;123(4):1008–1017. doi:10.1213/ANE.000000000000152727529322
  • LyrasL, CairnsNJ, JennerAM, JennerP, HalliwellB. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with alzheimer’s disease. J Neurochem. 2002;68(5):2061–2069. doi:10.1046/j.1471-4159.1997.68052061.x
  • HaradaA, TengJ, TakeiY, OguchiK, HirokawaN. Map2 is required for dendrite elongation, pka anchoring in dendrites, and proper pka signal transduction. J Cell Biol. 2002;158(3):541–549. doi:10.1083/jcb.20011013412163474
  • FredrikssonA, ArcherT, AlmH, GordhT, ErikssonP. Neurofunctional deficits and potentiated apoptosis by neonatal nmda antagonist administration. Behav Brain Res. 2004;153(2):367–376. doi:10.1016/j.bbr.2003.12.02615265631
  • SatomotoM, SatohY, TeruiK, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 2009;110(3):628–637. doi:10.1097/ALN.0b013e3181974fa219212262
  • CattanoD, YoungC, StraikoMMW, OlneyJW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106(6):1712–1714. doi:10.1213/ane.0b013e318172ba0a18499599
  • IstaphanousGK, HowardJ, NanX, et al. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114(3):578–587. doi:10.1097/ALN.0b013e3182084a7021293251
  • SlikkerW Jr, ZouX, HotchkissCE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98(1):145–158. doi:10.1093/toxsci/kfm08417426105
  • ZouX, LiuF, ZhangX, et al. Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol. 2011;33(5):592–597. doi:10.1016/j.ntt.2011.06.00321708249
  • ZouX, PattersonTA, DivineRL, et al. Prolonged Exposure to Ketamine Increases Neurodegeneration in the Developing Monkey Brain. Int J Dev Neurosci. 2009;27(7):727–731. doi:10.1016/j.ijdevneu.2009.06.01019580862
  • PancaroC, SegalBS, SikesRW, et al. Dexmedetomidine and ketamine show distinct patterns of cell degeneration and apoptosis in the developing rat neonatal brain. J Matern Fetal Neonatal Med. 2016;29(23):3827–3833. doi:10.3109/14767058.2016.114813226821538
  • ShimizuS, NaritaM, TsujimotoY, TsujimotoY. Bcl-2 family proteins regulate the release of apoptogenic cytochrome C by the mitochondrial channel Vdac. Nature. 1999;399(6735):483–487. doi:10.1038/2095910365962
  • OrreniusS, GogvadzeV, ZhivotovskyB. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460:72–81. doi:10.1016/j.bbrc.2015.01.13725998735
  • CuiJ, ZhaoH. Dexmedetomidine attenuates oxidative stress induced lung alveolar epithelial cell apoptosis in vitro. Oxid Med Cell Longev. 2015;2015:358396.25838866
  • ParkJW, ChungHW, LeeEJ, JungKH, PaikJY, LeeKH. Α2-adrenergic agonists including xylazine and dexmedetomidine inhibit norepinephrine transporter function in Sk-N-Sh cells. Neurosci Lett. 2013;541:184–189. doi:10.1016/j.neulet.2013.02.02223485735
  • OteraH, IshiharaN, MiharaK. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta. 2013;1833(5):1256–1268. doi:10.1016/j.bbamcr.2013.02.00223434681
  • CarpioMA, MichaudM, ZhouW, FisherJK, WalenskyLD, KatzSG. Bcl-2 family member bok promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2015;112(23):7201–7206. doi:10.1073/pnas.142106311226015568
  • ZengH, KongX, PengH, et al. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2012;16(6):711–727.22913201
  • GahlRF, DwivediP, TjandraN. Bcl-2 proteins bid and bax form a network to permeabilize the mitochondria at the onset of apoptosis. Cell Death Dis. 2016;7(10):e2424. doi:10.1038/cddis.2016.32027763642
  • DengX, GaoF, MayWS Jr. Bcl2 retards G1/S cell cycle transition by regulating intracellular ros. Blood. 2003;102(9):3179–3185. doi:10.1182/blood-2003-04-102712855558
  • DispersynG, NuydensR, ConnorsR, BorgersM, GeertsH. Bcl-2 protects against Fccp-induced apoptosis and mitochondrial membrane potential depolarization in Pc12 cells. Biochim Biophys Acta. 1999;1428(2–3):357–371. doi:10.1016/S0304-4165(99)00073-210434055
  • TangX-Q, FengJ-Q, ChenJ, et al. Protection of oxidative preconditioning against apoptosis induced by H2o2 in Pc12 cells: mechanisms via Mmp, Ros, and Bcl-2. Brain Res. 2005;1057(1–2):57–64. doi:10.1016/j.brainres.2005.07.07216129420
  • SenaLA, ChandelNS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167. doi:10.1016/j.molcel.2012.09.02523102266
  • TurrensJF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–344. doi:10.1113/jphysiol.2003.04947814561818
  • BrandMD, AffourtitC, EstevesTC, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37(6):755–767. doi:10.1016/j.freeradbiomed.2004.05.03415304252
  • ChenB-S, PengH, WuS-N. Dexmedetomidine, an α2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current. Br J Anaesth. 2009;103(2):244–254. doi:10.1093/bja/aep10719542547
  • IshiiH, KohnoT, YamakuraT, IkomaM, BabaH. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. Eur J Neurosci. 2008;27(12):3182–3190. doi:10.1111/j.1460-9568.2008.06260.x18554299
  • ShirasakaT, KannanH, TakasakiM. Activation of a G protein-coupled inwardly rectifying K+ current and suppression of Ih contribute to dexmedetomidine-induced inhibition of rat hypothalamic paraventricular nucleus neurons. Anesthesiology. 2007;107:605–615. doi:10.1097/01.anes.0000281916.65365.4e17893457
  • CreeleyCE, DikranianKT, DissenGA, BackSA, OlneyJW, BrambrinkAM. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology. 2014;120:626–638. doi:10.1097/ALN.000000000000003724158051
  • AndropoulosDB, GreeneMF. Anesthesia and developing brains — implications of the fda warning. N Engl J Med. 2017;376:905–907. doi:10.1056/NEJMp170019628177852
  • Pia BanerjeeMG, RossiDL, AnghelescuWL, et al. Association between anesthesia exposure and neurocognitive and neuroimaging outcomes in long-term survivors of childhood acute lymphoblastic leukemia. JAMA Oncol. 2019;5:1456. doi:10.1001/jamaoncol.2019.109431219514
  • BeaudoinGMJ, LeeS-H, SinghD, et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 2012;7:1741–1754. doi:10.1038/nprot.2012.09922936216