368
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Study on Hepatotoxicity of Rhubarb Based on Metabolomics and Network Pharmacology

, , , , , , , & ORCID Icon show all
Pages 1883-1902 | Published online: 04 May 2021

References

  • National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Chinese Medical Sciences and Technology Press; 2020:23–24.
  • GuoP, ZhangT, ZhuX, et al. Modern research of rhubarb toxicity and attenuating countermeasures. Chin Tradit Herb Drugs. 2009;40:1671–1674.
  • WeiL, LiuL. The toxic and side effects of rhubarb and its reasonable application in nephropathy. Chin J Nephrol Res. 2018;7:13–16.
  • DaiZ. Effects of rhubarb processed products and processing methods on its main chemical components. J Clin Ration Drug Use. 2012;5:23.
  • DouZ, XuB, ShiZ, et al. Hepatorenal toxicity and effect substances of rhubarb anthraquinones. J Clin Pharmacol. 2018;34:1214–1217.
  • WanB, ZhangH, YinJT, et al. Rhubarb vs. glycerin enema for treatment of critically ill patients with intra-abdominal hypertension. Exp Ther Med. 2017;14(1):855–861. doi:10.3892/etm.2017.455628673010
  • LiuD. Active Parts of Rhubarb in the Treatment of Chronic Kidney Disease and Its Mechanism of Action Against Renal Fibrosis [dissertation]. Northwest University; 2019.
  • ZhaoPP, TongJM, ZhangSF, et al. Research progress of rhubarb toxicity and its reasonable application. J Hunan Univ Tradit Chin Med. 2016;36:93–97.
  • ZhangL, ChangJH, ZhangBQ, et al. The pharmacokinetic study on the mechanism of toxicity attenuation of rhubarb total free anthraquinone oral colon-specific drug delivery system. Fitoterapia. 2015;104:86–96. doi:10.1016/j.fitote.2015.05.01826036751
  • HuYF, XiangL, WangP, et al. Modern research progress of rhubarb liver and kidney toxicity and its attenuating methods. Chin J Exp Tradit Med Formul. 2019;25:34–41.
  • ZhangPJ, LiYM, ZhangYN, et al. Application and prospect of toxicity quality markers of Chinese materia medica based on metabolomics. Chin Herb Med. 2018;10(2):108–116. doi:10.1016/j.chmed.2018.02.001
  • LiuP, WeiH, ChangJ, et al. Oral colon-specific drug delivery system reduces the nephrotoxicity of rhubarb anthraquinones when they produce purgative efficacy. Exp Ther Med. 2017;14(4):3589–3601. doi:10.3892/etm.2017.495929042953
  • MaLP. The Interaction Between Anthraquinones and Renal OATs and the Interaction Between Aristolochic Acid A and Intestinal Efflux Transporters [dissertation]. Zhejiang University; 2015.
  • RenL, ZengBY, ZhangST, et al. Toxic effect of Rhubarb total anthraquinone on human renal tubular epithelial cells and related mechanisms. Pharmacol Clin Chin Mater Med. 2015;31:79–83.
  • DengN, YiY, LiangAH. Mechanism of nephrotoxicity of rhubarb in rats. J Chin Mater Med. 2018;43:2777–2783.
  • RenHB, WangYY, WangTJ. Rhubarb total anthraquinone to rat acute renal toxicity research. J Liaoning Univ Tradit Chin Med. 2012;14:69–71.
  • WangJB, KongWJ, WangHJ, et al. Toxic effects caused by rhubarb (Rheum palmatum L.) are reversed on immature and aged rats. J Ethnopharmacol. 2011;134(2):216–220. doi:10.1016/j.jep.2010.12.00821163343
  • LiSN, YuanYF. Application of metabolomics technology in hepatotoxicity biomarkers screening. Med Recapitulate. 2017;23:2131–2134 + 2139.
  • ChenJQ, ChenYY, TaoHJ, et al. An integrated metabolomics strategy to reveal dose-effect relationship and therapeutic mechanisms of different efficacy of rhubarb in constipation rats. J Pharm Biomed Anal. 2020;177:112837. doi:10.1016/j.jpba.2019.11283731493746
  • ZhangCE, NiuM, LiRY, et al. Untargeted metabolomics reveals dose-response characteristics for effect of rhubarb in a rat model of cholestasis. Front Pharmacol. 2016;7:85. doi:10.3389/fphar.2016.0008527065293
  • ZhangJ, LiangR, WangL, et al. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. J Ethnopharmacol. 2019;229:104–114. doi:10.1016/j.jep.2018.10.00430312741
  • WuCW, LuL, LiangSW, et al. Application of drug target prediction technology in the pharmacology of TCM networks. J Chin Mater Med. 2016;3:377–382.
  • SongW, NiS, FuY, et al. Uncovering the mechanism of Maxing Ganshi decoction on asthma from a systematic perspective: a Network Pharmacology Study. Sci Rep. 2018;8(1):17362. doi:10.1038/s41598-018-35791-930478434
  • NingZC, WangC, LiuY, et al. A integrating strategies of herbal metabolomics, network pharmacology, and experiment validation to investigate frankincense processing effects. Front Pharmacol. 2018;9:1482. doi:10.3389/fphar.2018.0148230618770
  • HaoJ, GaoZ, GaoH, et al. Discussion on the nephrotoxicity mechanism of Tripterygium wilfordii based on network pharmacology. Chin J Exp Formul. 2019;16:142–151.
  • WangX, WangZB, LuoC, et al. The prospective value of dopamine receptors on bio-behavior of tumor. J Cancer. 2019;10(7):1622–1632. doi:10.7150/jca.2778031205518
  • WahlangB, McClainC, BarveS, et al. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal. 2018;49:105–115. doi:10.1016/j.cellsig.2018.06.00529902522
  • LiJ. Discussion on the Effect and Mechanism of Zhixiong Capsule in Treating Cerebral Arteriosclerosis Based on Network Pharmacology and Metabonomics [dissertation]. Shaanxi Academy of Traditional Chinese Medicine; 2020.
  • ChengB. Research on the Mechanism of Danggui Sini Decoction on Rheumatoid Arthritis Disease Based on Metabolomics and Network Pharmacology [dissertation]. Guangxi Medical University; 2018.
  • LiQ. Rhubarb pharmacology and clinical applicatio. Mod J Integr Tradit Chin West Med. 2011;5:165–166.
  • HuangQ, LuGD, ShenHM, et al. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007;27(5):609–630. doi:10.1002/med.2009417022020
  • BaiJ, SunX, LiuQ, et al. Research on rhubarb hepatotoxicity and attenuation strategies. J Harbin Univ Commer. 2014;30:529–531.
  • HongM, LiS, TanHY, et al. A network-based pharmacology study of the herb-induced liver injury potential of traditional hepatoprotective chinese herbal medicines. Molecules. 2017;22(4):632. doi:10.3390/molecules22040632
  • WangJ, SongYY, LiY, et al. Analysis of 104 cases of drug-induced liver injury. Chin Drug Appl Monit. 2020;1:37–40+ 66.
  • LiN, LvY, HuaH. Analysis of 152 cases of drug-induced liver injury. Chin Drug Eval. 2019;36:53–56.
  • SunC, XuJ. Clinical analysis of 152 cases of drug-induced liver injury. Chin J Pharmacoepidemiol. 2017;26:413–416.
  • YaoF, WangY. Comprehensive analysis of 9355 cases of drug-induced liver injury. Anhui Med. 2011;15:1313.
  • CaiLQ. Analysis of drug-induced liver injury cases. Strait Pharm J. 2014;26:183–185.
  • JinW, WangYF, GeRL, et al. Simultaneous analysis of multiple bioactive constituents inRheum tanguticum Maxim. ex Balf. by high-performance liquid chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(14):2351–2360. doi:10.1002/rcm.308617593565
  • LiuY, LiL, XiaoYQ, et al. Global metabolite profiling and diagnostic ion filtering strategy by LC–QTOF MS for rapid identification of raw and processed pieces of Rheum palmatum L. Food Chem. 2016;192:531–540. doi:10.1016/j.foodchem.2015.07.01326304381
  • JiangHQ, RongR, LvQT. Identification of the chemical constituents of rhubarb by liquid chromatography-mass spectrometry. Lishizhen Med Mater Med Res. 2011;22:1705–1706.
  • LiuMJ, WangY, LiLY, et al. UPLC-Q-TOF-MS/MS rapid identification analysis of chemical constituents of Sanhuang tablets. China J Chin Mater Med. 2017;42:1685–1692.
  • ShanL, YangN, ZhaoN, et al. A rapid classification and identification method applied to the analysis of glycosides in Bupleuri radix and liquorice by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci. 2018;41(19):3791–3805. doi:10.1002/jssc.20180061930074686
  • YeZG, ZhangGP. Development, current situation and countermeasures of safety evaluation of traditional Chinese medicine. Chin J Exp Pharmacol. 2014;20:1–6.
  • YangM. Fundamental Research on Hepatotoxicity of Polygonum Multiflorum Based on Precise Liver Sectioning Technology [dissertation]. Shanxi Medical University; 2016.
  • SongJ, MaZJ, WangJB, et al. Study on the effect of Polygonum multiflorum and its main components on normal human L02 hepatocyte injury. Beijing J Tradit Chin Med. 2016;35:694–697.
  • YangX, LiuC, YuanF, et al. Study on the mechanism of pokeweed-induced kidney injury in rats based on network toxicology. Chin Herb Med. 2019;50:4974–4984.
  • WenFF, XuZ, LiuLP, et al. Effect of dopamine on intracerebral glutamate uptake ability in rats with minimal hepatic encephalopathy and the pathogenesis of minimal hepatic encephalopathy. Chin J Hepatol. 2018;26:48–53.
  • Gracia-SanchoJ, Maeso-DíazR, Fernández-IglesiasA, et al. New cellular and molecular targets for the treatment of portal hypertension. Hepatol Int. 2015;9(2):183–191. doi:10.1007/s12072-015-9613-525788198
  • SumiokaS, MatsuraT, KasugaS, et al. Mechanisms of protection by S-allylmercaptocysteine against acetaminophen-induced liver injury in mice. Jpn J Pharmacol. 1998;78:199–207. doi:10.1254/jjp.78.1999829623
  • YuJ, HeJQ, ChenDY, et al. Dynamic changes of key metabolites during liver fibrosis in rats. World J Gastroenterol. 2019;25(8):941–954. doi:10.3748/wjg.v25.i8.94130833800
  • AhmadMI, UmairIM, HussainM, et al. High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1 −/− mice. Food Funct. 2020;11(1):236–252. doi:10.1039/C9FO02207D31956867
  • ZhouH, TangL, YangY, et al. Dopamine alleviated acute liver injury induced by lipopolysaccharide/d-galactosamine in mice. Int Immunopharmacol. 2018;61:249–255. doi:10.1016/j.intimp.2018.06.00429894864
  • AdachiN, InoueH, AraiT. Changes in the brain monoamine metabolism in acute liver failure produced by ischemia-reperfusion injury in rats. Crit Care Med. 1998;26(4):717–722. doi:10.1097/00003246-199804000-000219559610
  • YangJ, ChangN, YangL, et al. Sphingosine 1-phosphate receptor blockade affects pro-inflammatory bone marrow-derived macrophages and relieves mouse fatty liver injury. Int J Mol Sci. 2019;20(19):4695. doi:10.3390/ijms20194695
  • BartneckM, FechV, EhlingJ, et al. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology. 2016;63(4):1310–1324. doi:10.1002/hep.2841826699087
  • KusumotoC, KinugawaT, MorikawaH, et al. Protection by exogenously added coenzyme Q(9) against free radical-induced injuries in human liver cells. J Clin Biochem Nutr. 2010;46(3):244–251. doi:10.3164/jcbn.09-12820490320
  • LiY, JuL, HouZ, et al. Screening; verification; and optimization of biomarkers for early prediction of cardiotoxicity based on metabolomics. J Proteome Res. 2015;14(6):2437–2445. doi:10.1021/pr501116c25919346
  • OlayanRS, AshoorH, BajicVB, WrenJ. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics. 2018;34(7):1164–1173. doi:10.1093/bioinformatics/btx73129186331
  • ReddyH, ZhangS. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. 2013;6(1):41–47. doi:10.1586/ecp.12.7423272792
  • NaveedH, HameedUS, HarrusD, et al. An integrated structure and system-based framework to identify new targets of metabolites and known drugs. Bioinformatics. 2015;31:3922–3929. doi:10.1093/bioinformatics/btv47726286808
  • QiYJ, BalemF, FaloutsosC, et al. Protein complex identification by supervised graph local clustering. Bioinformatics. 2008;24(13):i250–258. doi:10.1093/bioinformatics/btn16418586722
  • LemerC, AntezanaE, CoucheF, et al. The aMAZE LightBench: a web interface to a relational database of cellular processes. Nucleic Acids Res. 2004;32(90001):D443–448. doi:10.1093/nar/gkh13914681453
  • XuJJ, WangSY, ChenY, et al. Dopamine D1 receptor activation induces dehydroepiandrosterone sulfotransferase (SULT2A1) in HepG2 cells. Acta Pharmacol Sin. 2014;35(7):889–898. doi:10.1038/aps.2014.1924909515
  • YanY, JiangW, LiuL, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160(1–2):62–73. doi:10.1016/j.cell.2014.11.04725594175
  • KimuraH, ImuraYK, TomiyasuH, et al. Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Sci Rep. 2019;9(1):5887. doi:10.1038/s41598-019-41698-w30971711
  • KhuranaS, ShahN, ChengK, et al. Scopolamine treatment and muscarinic receptor subtype-3 gene ablation augment azoxymethane-induced murine liver injury. J Pharmacol Exp Therapeutics. 2010;333(3):639–649. doi:10.1124/jpet.109.165118
  • O’BrienAJ, FullertonJN, MasseyKA, et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med. 2014;20(5):518–523. doi:10.1038/nm.351624728410
  • ClariaJ, StauberRE, CoenraadMJ, et al. Systemic infammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64(4):1249–1264. doi:10.1002/hep.2874027483394
  • WangY, ChenC, QiJ, et al. Altered PGE2-EP2 is associated with an excessive immune response in HBV-related acute-on-chronic liver failure. J Transl Med. 2019;17(1):93. doi:10.1186/s12967-019-1844-030890164
  • ZhengSJ, LiuS, LiuM, et al. Prognostic value of m30/m65 for outcome of hepatitis b virus-related acute-on-chronic liver failure. World J Gastroenterol. 2014;20(9):2403–2411. doi:10.3748/wjg.v20.i9.240324605039
  • HangaiS, AoT, KimuraY, et al. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc Natl Acad Sci USA. 2016;113(14):3844–3849. doi:10.1073/pnas.160202311327001836
  • ChaiBJ, LiX, SuJW. Subacute toxicity of Rhubarb total extract in rats. Pharm Clin Res. 2011;19:322–324.
  • LouYH, WangJS, DongG, et al. The acute hepatotoxicity of tacrine explained by 1H NMR based metabolomic profiling. Toxicol Res. 2015;4(6):1465–1478. doi:10.1039/C5TX00096C
  • LiY, WangL, JuL, et al. A systematic strategy for screening and application of specific biomarkers in hepatotoxicity using metabolomics combined with ROC curves and SVMs. Toxicol Sci. 2016;150(2):390–399. doi:10.1093/toxsci/kfw00126781514
  • LiuYT, JiaHM, ChangX, et al. Metabolic pathways involved in Xin-Ke-Shu protecting against myocardial infarction in rats using ultra high-performance liquid chromatography coupled with quadrupole time-of-flflight mass spectrometry. J Pharm Biomed Anal. 2014;90:35–44. doi:10.1016/j.jpba.2013.11.00824321516
  • DuanL, GuoL, LiuK, et al. Characterization and classifification of seven citrus herbs by liquid chromatography-quadrupole time-of-flflight mass spectrometry and genetic algorithm optimized support vector machines. J Chromatogr A. 2014;1339:118–127. doi:10.1016/j.chroma.2014.02.09124656543
  • LiuL, XuSX, ZhangJP, et al. Based on the network pharmacology method to explore the mechanism of treatment of atherosclerosis with Simiao Yongan decoction. Chin J Tradit Med. 2019;37:572−578 + 773−775.
  • XieJ, DongW, LiuR, et al. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Nanotoxicology. 2018;12(1):18–31. doi:10.1080/17435390.2017.141538929251223
  • ZengJ, YinPY, TanYX, et al. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J Proteome Res. 2014;13(7):3420–3431. doi:10.1021/pr500390y24853826