195
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Potential Mechanism of S. baicalensis on Lipid Metabolism Explored via Network Pharmacology and Untargeted Lipidomics

ORCID Icon, , , , , , , , & show all
Pages 1915-1930 | Published online: 04 May 2021

References

  • BallaT. Cell biology: lipid code for membrane recycling. Nature. 2016;529(7586):292–293. doi:10.1038/nature1686826760211
  • FieldingCJ, FieldingPE. Membrane cholesterol and the regulation of signal transduction. Biochem Soc Trans. 2004;32(1):65–69. doi:10.1042/bst032006514748714
  • ChenJH, HsiehCJ, HuangYL, et al. Genetic polymorphisms of lipid metabolism gene SAR1 homolog B and the risk of Alzheimer’s disease and vascular dementia. J Formos Med Assoc. 2016;115(1):38–44. doi:10.1016/j.jfma.2015.01.00825703997
  • HussainG, AnwarH, RasulA, et al. Lipids as biomarkers of brain disorders. Crit Rev Food Sci. 2020;60(3):351–374. doi:10.1080/10408398.2018.1529653
  • BalesKR. Brain lipid metabolism, apolipoprotein E and the pathophysiology of Alzheimer’s disease. Neuropharmacology. 2010;59(4–5):295–302. doi:10.1016/j.neuropharm.2010.01.00520079752
  • ChengTJ, ChuuJJ, ChangCY, TsaiWC, ChenKJ, GuoHR. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism. Toxicol Appl Pharmacol. 2011;256(2):146–153. doi:10.1016/j.taap.2011.08.00121851829
  • ZarroukA, DebbabiM, BezineM, et al. Lipid biomarkers in Alzheimer’s disease. Curr Alzheimer Res. 2018;15(4):303–312. doi:10.2174/156720501466617050510142628474568
  • Pena-BautistaC, AlvarezL, DurandT, et al. Clinical utility of plasma lipid peroxidation biomarkers in Alzheimer’s disease differential diagnosis. Antioxidants (Basel). 2020;9(8).
  • van der KantR, LangnessVF, HerreraCM, et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-beta in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell. 2019;24(3):363–375 e369. doi:10.1016/j.stem.2018.12.01330686764
  • FontehAN, OrmsethC, ChiangJ, CipollaM, ArakakiX, HarringtonMG. Sphingolipid metabolism correlates with cerebrospinal fluid beta amyloid levels in Alzheimer’s disease. PLoS One. 2015;10(5):e0125597. doi:10.1371/journal.pone.012559725938590
  • McHale-OwenH, BateC. Cholesterol ester hydrolase inhibitors reduce the production of synaptotoxic amyloid-beta oligomers. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):649–659. doi:10.1016/j.bbadis.2017.12.01729247837
  • NakamuraN, PenceLM, CaoZ, BegerRD. Distinct lipid signatures are identified in the plasma of rats with chronic inflammation induced by estradiol benzoate and sex hormones. Metabolomics. 2020;16(9):95. doi:10.1007/s11306-020-01715-w32895772
  • MingJ, ZhuonengL, GuangxunZ. Protective role of flavonoid baicalin from S. baicalensis in periodontal disease pathogenesis: a literature review. Complement Ther Med. 2018;38:11–18. doi:10.1016/j.ctim.2018.03.01029857875
  • NaHY, LeeBC. S. baicalensis alleviates insulin resistance in diet-induced obese mice by modulating inflammation. Int J Mol Sci. 2019;20(3):727. doi:10.3390/ijms20030727
  • ZhaoT, TangH, XieL, et al. S. baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019;71(9):1353–1369. doi:10.1111/jphp.1312931236960
  • PangH, JiaW, HuZ. Emerging applications of metabolomics in clinical pharmacology. Clin Pharmacol Ther. 2019;106(3):544–556. doi:10.1002/cpt.153831173340
  • ChenH, ZhangF, ZhangJ, ZhangX, GuoY, YaoQ. A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiome-metabolomics analysis. Front Immunol. 2020;11:588079. doi:10.3389/fimmu.2020.58807933072135
  • EfferthT, XuAL, LeeDYW. Combining the wisdoms of traditional medicine with cutting-edge science and technology at the forefront of medical sciences. Phytomedicine. 2019;64:153078. doi:10.1016/j.phymed.2019.15307831505440
  • ZhangW, ChenY, JiangH, et al. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta. 2020;211:120710. doi:10.1016/j.talanta.2020.12071032070601
  • AryaH, CoumarMS. Virtual screening of traditional Chinese medicine (TCM) database: identification of fragment-like lead molecules for filariasis target asparaginyl-tRNA synthetase. J Mol Model. 2014;20(6):2266. doi:10.1007/s00894-014-2266-924842326
  • ZhouY, ZhouB, PacheL, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-630944313
  • SzklarczykD, GableAL, LyonD, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky113130476243
  • MorrisGM, HueyR, LindstromW, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.2125619399780
  • TrottO, OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.2133419499576
  • XiaJG, PsychogiosN, YoungN, WishartDS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–W660. doi:10.1093/nar/gkp35619429898
  • WoodPA, PidcockE, AllenFH. Interaction geometries and energies of hydrogen bonds to C[double bond]O and C[double bond]S acceptors: a comparative study. Acta Crystallogr B. 2008;64(4):491–496. doi:10.1107/S010876810801543718641451
  • YouCL, SuPQ, ZhouXX. [Study on effect and mechanism of S. baicalensis stem-leaf total flavonoid in regulating lipid metabolism]. Zhongguo Zhong Yao Za Zhi. 2008;33(9):1064–1066. Chinese.18652359
  • CuiX, QianDW, JiangS, ShangEX, ZhuZH, DuanJA. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci. 2018;19(11):3634. doi:10.3390/ijms19113634
  • XiaoS, LiuC, ChenM, et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol. 2020;104(1):303–317. doi:10.1007/s00253-019-10174-w31758238
  • SeoMJ, ChoiHS, JeonHJ, WooMS, LeeBY. Baicalein inhibits lipid accumulation by regulating early adipogenesis and m-TOR signaling. Food Chem Toxicol. 2014;67:57–64. doi:10.1016/j.fct.2014.02.00924560969
  • HangY, QinX, RenT, CaoJ. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis. 2018;17(1):146. doi:10.1186/s12944-018-0797-229935544
  • HeXW, YuD, LiWL, et al. Anti-atherosclerotic potential of baicalin mediated by promoting cholesterol efflux from macrophages via the PPARgamma-LXRalpha-ABCA1/ABCG1 pathway. Biomed Pharmacother. 2016;83:257–264. doi:10.1016/j.biopha.2016.06.04627389392
  • DaiJ, LiangK, ZhaoS, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A. 2018;115(26):E5896–E5905. doi:10.1073/pnas.180174511529891721
  • SongKH, LeeSH, KimBY, ParkAY, KimJY. Extracts of S. baicalensis reduced body weight and blood triglyceride in db/db Mice. Phytother Res. 2013;27(2):244–250. doi:10.1002/ptr.469122532505
  • WangZY, JiangZM, XiaoPT, JiangYQ, LiuWJ, LiuEH. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur J Pharmacol. 2020;878:878. doi:10.1016/j.ejphar.2020.173103
  • RosenheimMC. The cholesterol of the brain. III. Note on the cholesterol contents of human and animal brain. Biochem J. 1914;8(1):82–83. doi:10.1042/bj008008216742293
  • JinU, ParkSJ, ParkSM. Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp Neurobiol. 2019;28(5):554–567. doi:10.5607/en.2019.28.5.55431698548
  • LocatelliS, LutjohannD, SchmidtHH, OttoC, BeisiegelU, von BergmannK. Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol. 2002;59(2):213–216. doi:10.1001/archneur.59.2.21311843691
  • LukiwWJ. Cholesterol and 24S-hydroxycholesterol trafficking in Alzheimer’s disease. Expert Rev Neurother. 2006;6(5):683–693. doi:10.1586/14737175.6.5.68316734516
  • SuiZ, ZhouJ, ChengZ, LuP. Squalene epoxidase (SQLE) promotes the growth and migration of the hepatocellular carcinoma cells. Tumour Biol. 2015;36(8):6173–6179. doi:10.1007/s13277-015-3301-x25787749
  • GeH, ZhaoY, ShiX, et al. Squalene epoxidase promotes the proliferation and metastasis of lung squamous cell carcinoma cells though extracellular signal-regulated kinase signaling. Thorac Cancer. 2019;10(3):428–436. doi:10.1111/1759-7714.1294430734525
  • RahmanSO, HussainS, AlzahraniA, AkhtarM, NajmiAK. Effect of statins on amyloidosis in the rodent models of Alzheimer’s disease: evidence from the preclinical meta-analysis. Brain Res. 2020;1749:147115. doi:10.1016/j.brainres.2020.14711532918868
  • XuF, RychnovskySD, BelaniJD, HobbsHH, CohenJC, RawsonRB. Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci U S A. 2005;102(41):14551–14556. doi:10.1073/pnas.050359010216199524
  • MahoneyCE, PirmanD, ChubukovV, et al. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun. 2019;10(1):96. doi:10.1038/s41467-018-07959-430626880
  • ChengCS, ChenJ, TanHY, WangN, ChenZ, FengY. S. baicalensis and cancer treatment: recent progress and perspectives in biomedical and clinical studies. Am J Chin Med. 2018;46(1):25–54. doi:10.1142/S0192415X1850002729316796
  • GiussaniP, PrinettiA, TringaliC. The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem. 2020;156:403–414. doi:10.1111/jnc.1513333448358
  • Avila-GarciaR, ValdesJ, Jauregui-WadeJM, Ayala-SumuanoJT, Cerbon-SolorzanoJ. The metabolic pathway of sphingolipids biosynthesis and signaling in Entamoeba histolytica. Biochem Biophys Res Commun. 2020;522(3):574–579. doi:10.1016/j.bbrc.2019.11.11631785811
  • AmaroM, SachlR, AydoganG, MikhalyovII, VachaR, HofM. GM1 ganglioside inhibits beta-amyloid oligomerization induced by sphingomyelin. Angew Chem Int Ed Engl. 2016;55(32):9411–9415. doi:10.1002/anie.20160317827295499
  • RudajevV, NovotnyJ. The role of lipid environment in ganglioside GM1-induced amyloid beta aggregation. Membranes (Basel). 2020;10(9). doi:10.3390/membranes10090226
  • ParveenF, BenderD, LawSH, MishraVK, ChenCC, KeLY. Role of ceramidases in sphingolipid metabolism and human diseases. Cells. 2019;8(12):1573. doi:10.3390/cells8121573
  • SunLM, ZhuBJ, CaoHT, et al. Explore the effects of Huang-Lian-Jie-Du-Tang on Alzheimer’s disease by UPLC-QTOF/MS-based plasma metabolomics study. J Pharm Biomed Anal. 2018;151:75–83. doi:10.1016/j.jpba.2017.12.05329310050
  • Andrieu-AbadieN, LevadeT. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta. 2002;1585(2–3):126–134. doi:10.1016/S1388-1981(02)00332-312531545
  • KimMH, AhnHK, LeeEJ, et al. Hepatic inflammatory cytokine production can be regulated by modulating sphingomyelinase and ceramide synthase 6. Int J Mol Med. 2017;39(2):453–462. doi:10.3892/ijmm.2016.283528035360
  • OninlaVO, BreidenB, BabalolaJO, SandhoffK. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2. J Lipid Res. 2014;55(12):2606–2619. doi:10.1194/jlr.M05452825339683
  • MohammadT, MathurY, HassanMI. InstaDock: a single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief Bioinform. 2020. doi:10.1093/bib/bbaa279