308
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Mechanism of Action of Nicotiflorin from Tricyrtis maculata in the Treatment of Acute Myocardial Infarction: From Network Pharmacology to Experimental Pharmacology

, , , , , , ORCID Icon & show all
Pages 2179-2191 | Published online: 24 May 2021

References

  • GeY, LiR, YangQ, LiN, ZhaoX. Experimental study on the intervention of Yiqi Huoxue recipe on MAPKs signaling pathway in acute myocardial infarction. Chin Arch Trad Chin Med. 2020;1–12.
  • XieJ, GaoS, LiL, XuY, GaoS, YuC. Research progress and application strategy on network pharmacology in Chinese materia medica. Chin Trad Herbal Drugs. 2019;50(10):2257–2265. doi:10.7501/j.issn.0253-2670.2019.10.001
  • SunJ, JiaT. Preliminary study on the material basis of the activating blood effect of Tricyrtis maculata. J Chin Med Mater. 2016;39(02):419–421. doi:10.13863/j.issn1001-4454.2016.02.045
  • HopkinsA. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1111. doi:10.1038/nbt1007-111017921993
  • YangJ, ZhangD, ZhangX, SunJ. Chemical constituents of Tricyrtis maculata (D. Don) Machride. Central South Pharm. 2017;15(07):922–924. doi:10.7539/j.issn.1672-2981.2017.07.014
  • YangJ. Study on Chemical Constituents of Four Medicinal Plants of Taibai Mountain. Northwest A&F University; 2011.
  • RenL, WangY, ZhangW, et al. Tricyrtis maculataTriculata A, a novel compound from (D. Don) J. F. Macbr. with biological properties. Nat Prod Res. 2020;1–9. doi:10.1080/14786419.2020.1736059.
  • WangY, ZhangW, RenL, SunJ, ZhangD. Trimacoside A, a high molecular weight antioxidant phenylpropanoid glycoside from Tricyrtis maculata. Records Nat Prod. 2021;15(3):194–201. doi:10.25135/rnp.209.20.09.1810
  • RenL, JiaT, LiX, et al. Study on quality standard of Tricyrtis maculata. China Pharm. 2019;30(08):1083–1090. doi:10.6039/j.issn.1001-0408.2019.08.14
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi:10.1093/nar/gkz38231106366
  • WuY, WangY, DuZ, LiJ, LiuQ, ShiY. Study on network pharmacology of water-soluble components of salvia miltiorrhiza in treating coronary heart disease. J Chongqing Univ Technol. 2020;1–12.
  • LiL, ChenJ, GuoY, HanT. Research on the mechanism of TCM turmeric in treating depression based on network pharmacology. J Liaoning Univ Trad Chin Med. 2020;22(02):121–125. doi:10.13194/j.issn.1673-842x.2020.02.033
  • ZhaoZ, HuS. A study on the mechanism of the Haizao Yuhu decoction regulating papillary thyroid cancer based on network pharmacology and molecular docking technology. Clin J Chin Med. 2020;12(29):1–8. doi:10.3969/j.issn.1674-7860.2020.29.001
  • HuangX, YuG, TongJ. Analysis of the pharmacological mechanism of tangerine peel based on network pharmacology. Chin Trad Patent Med. 2019;41(12):3038–3045. doi:10.3969/j.issn.1001-1528.2019.12.043
  • JiaY, ZouJ, WangY, et al. Action mechanism of Roman chamomile in the treatment of anxiety disorder based on network pharmacology. J Food Biochem. 2021;45(1):e13547. doi:10.1111/jfbc.1354733152801
  • ChenY, LiuC, HeT, et al. Network pharmacology study on Danshen Decoction in treatment of diabetic cardiomyopathy. Chin Trad Herbal Drugs. 2019;50(05):1164–1174. doi:10.7501/j.issn.0253-2670.2019.05.021
  • SongX, ZhouW, ChenC, WangS, LiangS. Study on material base of Ligusticum wallichii for treating brain ischemia and its molecular mechanism based on molecular docking. China J Chin Materia Medica. 2015;40(11):2195–2198. doi:10.4268/cjcmm20151124
  • FangQ, ZhangY, JiangD, ChenY. Hydroxytyrosol inhibits apoptosis in ischemia/reperfusion-induced acute kidney injury via activating Sonic Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(23):12380–12388. doi:10.26355/eurrev_202012_2403233336758
  • XuS, ZhaoY, YuL, ShenX, DingF, FuG. Rosiglitazone attenuates endothelial progenitor cell apoptosis induced by TNF-α via ERK/MAPK and NF-κB signal pathways. J Pharmacol Sci. 2011;117(4):265–274. doi:10.1254/jphs.11149fp22129539
  • LiB, TianJ, SunY, et al. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits. Biochim Biophys Acta. 2015;1852(5):805–815. doi:10.1016/j.bbadis.2015.01.01025615792
  • WangS. Clinical effect of Shexiangbaoxin pills combined with fasudil on acute myocardial infarction and impact on micro-inflammatory state and vascular endothelial function. Pract J Cardiac Cerebral Pneumal Vasc Dis. 2016;24(03):84–86. doi:10.3969/j.issn.1008-5971.2016.03.024
  • ChengX, LiaoY, LiB, et al. Effects of early treatment with metoprolol on myocardial inflammatory cytokine expression and heart function in rats with acute myocardial infarction. Chin J Cardiol. 2005;33(5):448–452.
  • FanJ, LiJ, ZhuD. Clinical diagnostic significance of serum Mb, cTnI and inflammatory factors IL-1 β and TNF- α in patients with acute myocardial infarction. Exp Lab Med. 2017;35(05):724–727. doi:10.3969/j.issn.1674-1129.2017.05.032
  • WangL, LiC, GuanC, et al. Nicotiflorin attenuates cell apoptosis in renal ischemia-reperfusion injury through activating transcription factor 3. Nephrology. 2021;26(4):358–368. doi:10.1111/nep.1384133295061
  • LiR, GuoM, ZhangG, XuX, LiQ. Neuroprotection of nicotiflorin in permanent focal cerebral ischemia and in neuronal cultures. Biol Pharm Bull. 2006;29(9):1868–1872. doi:10.1248/bpb.29.186816946500
  • JiaT, GuoT, TianM, ZhaiS, YangQ, SunJ. LC-MS/MS determination of distribution of nicotiflorin in rats and its excreta. Pharmacol Clin Chin Materia Medica. 2020;36(06):69–76. doi:10.13412/j.cnki.zyyl.2020.06.007
  • LiR, GuoM, ZhangG, XuX, LiQ. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. J Ethnopharmacol. 2006;107(1):143–150. doi:10.1016/j.jep.2006.04.02416806761
  • HuangJ, FuS, JiangY, et al. Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacol Biochem Behav. 2007;86(4):741–748. doi:10.1016/j.pbb.2007.03.00317448528
  • YangY, ZengX, LeiG. Quercetin protects cardiomyocytes subjected to anoxia/reoxygenation injury. Med Forum. 2019;23(17):2377–2379. doi:10.19435/j.1672-1721.2019.17.005
  • LinW, WangW, WangD, LingW. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res. 2017;61(9):1700031. doi:10.1002/mnfr.201700031
  • WangC, GuoC, LiX, et al. Protective effects of Kaempferol on hypoxic injury of myocardial cells through activation of mTOR pathway. Chin J Immunol. 2019;35(07):781–785. doi:10.3969/j.issn.1000-484X.2019.07.003
  • YanN, YangC, MaJ, et al. Effects of β-sitosterolon myocardial ischemia-reperfusion injury and ERK1/2 signaling pathway in rats. Adv Cardiovasc Dis. 2020;41(03):321–325. doi:10.16806/j.cnki.issn.1004-3934.2020.03.026
  • ZhangY, JinS, HeS, ZhangS, ZhangY, ChenL. Role of JNK and p38 MAPK signal pathways in morphine pretreatment to reduce myocardial ischemia reperfusion injury in heart failure rats. Chin J Anesthesiol. 2016;36(02):219–222.
  • OshimaY, FujioY, NakanishiT, et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res. 2005;65(2):428–435. doi:10.1016/j.cardiores.2004.10.02115639482
  • LuoW, HuangL, WangJ, et al. Inhibition of EGFR-STAT3 attenuates cardiomyopathy in streptozotocin-induced type 1 diabetes. J Endocrinol. 2019;242(3):199–210. doi:10.1530/joe-19-005831277074
  • ChengX, YangY, YangH, WangY, DuG. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol. 2018;56:29–35. doi:10.1016/j.intimp.2018.01.00229328946
  • VatankuluM, BacaksizA, SonmezO, et al. Does spironolactone have a dose-dependent effect on left ventricular remodeling in patients with preserved left ventricular function after an acute myocardial infarction? Cardiovasc Ther. 2013;31(4):224–229. doi:10.1111/1755-5922.1200622963506
  • HouY, YaoY, BaoY, et al. Juglanthraquinone C induces intracellular ROS increase and apoptosis by activating the Akt/Foxo signal pathway in HCC cells. Oxid Med Cell Longev. 2016;2016:4941623. doi:10.1155/2016/494162326682007
  • NingY, LiZ, QiuZ. FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. J Toxicol Sci. 2015;40(5):637–645. doi:10.2131/jts.40.63726354380
  • SenguptaA, MolkentinJ, PaikJ, DePinhoR, YutzeyK. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286(9):7468–7478. doi:10.1074/jbc.M110.17924221159781
  • ChistiakovDA, OrekhovAN, BobryshevYV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol. 2017;245.
  • NakaeJ, ParkB, AcciliD. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem. 1999;274(23):15982–15985. doi:10.1074/jbc.274.23.1598210347145
  • ChengS, HeX, HuangJ, YangP, FanZ. Formononetin attenuates myocardial injury in diabetic mice through AKT/FoxO1 signaling. Trad Chin Drug Res Clin Pharmacol. 2020;31(10):1165–1172. doi:10.19378/j.issn.1003-9783.2020.10.006