174
Views
13
CrossRef citations to date
0
Altmetric
Review

Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target?

, &
Pages 1851-1860 | Published online: 03 May 2021

References

  • ObsilT, ObsilovaV. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene. 2008;27(16):2263–2275. doi:10.1038/onc.2008.2018391969
  • WangY, ZhouY, GravesDT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:1–13. doi:10.1155/2014/408514
  • LinkW. Introduction to FOXO biology. FOXO Transcript Factors. 2019;1890:1–9. doi:10.1007/978-1-4939-8900-3_1
  • ZhaoY, YangJ, LiaoW, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12(7):665–675. doi:10.1038/ncb206920543840
  • PengS, LiW, HouN, HuangN. A review of FoxO1-regulated metabolic diseases and related drug discoveries. Cells. 2020;9(1). doi:10.3390/cells9010184
  • CrunkhornS. Diabetes: selective FOXO1 modulation. Nat Rev Drug Discov. 2017;16(12):828.
  • LuH, HuangH. FOXO1: a potential target for human diseases. Curr Drug Targets. 2011;12(9):1235–1244. doi:10.2174/13894501179615028021443466
  • ChengZ, GuoS, CoppsK, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009;15(11):1307–1311. doi:10.1038/nm.204919838201
  • ValentiL, RamettaR, DongiovanniP, et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes. 2008;57(5):1355–1362. doi:10.2337/db07-071418316359
  • GreerEL, BrunetA. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410–7425. doi:10.1038/sj.onc.120908616288288
  • DunhamA, MatthewsLH, BurtonJ, et al. The DNA sequence and analysis of human chromosome 13. Nature. 2004;428(6982):522–528. doi:10.1038/nature0237915057823
  • AndersonMJ, ViarsCS, CzekayS, CaveneeWK, ArdenKC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47(2):187–199. doi:10.1006/geno.1997.51229479491
  • GaliliN, DavisRJ, FredericksWJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5(3):230–235. doi:10.1038/ng1193-2308275086
  • NakaeJ, KitamuraT, SilverDL, AcciliD. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;108(9):1359–1367. doi:10.1172/JCI20011287611696581
  • BrentMM, AnandR, MarmorsteinR. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure. 2008;16(9):1407–1416. doi:10.1016/j.str.2008.06.01318786403
  • GuoS, RenaG, CichyS, HeX, CohenP, UntermanT. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999;274(24):17184–17192. doi:10.1074/jbc.274.24.1718410358076
  • BrunetA, KanaiF, StehnJ, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 2002;156(5):817–828. doi:10.1083/jcb.20011205911864996
  • ZhaoHH, HerreraRE, Coronado-HeinsohnE, et al. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem. 2001;276(30):27907–27912. doi:10.1074/jbc.M10427820011353774
  • PsenakovaK, KohoutovaK, ObsilovaV, AusserlechnerM, VeverkaV, ObsilT. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells. 2019;8(9):966. doi:10.3390/cells8090966
  • BanksAS, Kim-MullerJY, MastracciTL, et al. Dissociation of the glucose and lipid regulatory functions of FoxO1 by targeted knockin of acetylation-defective alleles in mice. Cell Metab. 2011;14(5):587–597. doi:10.1016/j.cmet.2011.09.01222055502
  • GoitreL, BalzacF, DeganiS, et al. KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One. 2010;5(7):e11786. doi:10.1371/journal.pone.001178620668652
  • SalineM, BadertscherL, WolterM, et al. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J Biol Chem. 2019;294(35):13106–13116. doi:10.1074/jbc.RA119.00864931308176
  • SinTK, YungBY, SiuPM. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem. 2015;35(2):541–552. doi:10.1159/00036971825612477
  • ChenJ, ZhangZ, WangN, et al. Role of HDAC9-FoxO1 axis in the transcriptional program associated with hepatic gluconeogenesis. Sci Rep. 2017;7(1):6102. doi:10.1038/s41598-017-06328-328733598
  • NakaeJ, KitamuraT, KitamuraY, BiggsWH, ArdenKC, AcciliD. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003;4(1):119–129. doi:10.1016/S1534-5807(02)00401-X12530968
  • KappelBA, StohrR, De AngelisL, MavilioM, MenghiniR, FedericiM. Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis. 2016;249:148–156. doi:10.1016/j.atherosclerosis.2016.04.00127105158
  • ChaeY-C, KimJ-Y, ParkJW, et al. FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 2019;47(4):1692–1705. doi:10.1093/nar/gky123030535125
  • PengS, XiaoW, JuD, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med. 2019;11:488. doi:10.1126/scitranslmed.aau7116
  • NagashimaT, ShigematsuN, MarukiR, et al. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol Pharmacol. 2010;78(5):961–970. doi:10.1124/mol.110.06571420736318
  • ZouP, LiuL, ZhengL, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13(23):3759–3767. doi:10.4161/15384101.2014.96597725483084
  • TanakaH, NagashimaT, ShimayaA, UranoY, ShimokawaT, ShibasakiM. Effects of the novel Foxo1 inhibitor AS1708727 on plasma glucose and triglyceride levels in diabetic db/db mice. Eur J Pharmacol. 2010;645(1–3):185–191. doi:10.1016/j.ejphar.2010.07.01820655898
  • HumphreySJ, JamesDE, MannM. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metabol. 2015;26(12):676–687. doi:10.1016/j.tem.2015.09.013
  • MartinezSC, Cras-MeneurC, Bernal-MizrachiE, PermuttMA. Glucose regulates Foxo1 through insulin receptor signaling in the pancreatic islet beta-cell. Diabetes. 2006;55(6):1581–1591. doi:10.2337/db05-067816731820
  • RenaG, GuoS, CichySC, UntermanTG, CohenP. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem. 1999;274(24):17179–17183. doi:10.1074/jbc.274.24.1717910358075
  • BrunetA, BonniA, ZigmondMJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–868. doi:10.1016/S0092-8674(00)80595-410102273
  • Del PesoL, GonzalezVM, HernandezR, BarrFG, NunezG. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene. 1999;18(51):7328–7333. doi:10.1038/sj.onc.120315910602488
  • BiggsWH, MeisenhelderJ, HunterT, CaveneeWK, ArdenKC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96(13):7421–7426. doi:10.1073/pnas.96.13.742110377430
  • ZhangX, GanL, PanH, et al. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem. 2002;277(47):45276–45284. doi:10.1074/jbc.M20806320012228231
  • NakaeJ, BarrV, AcciliD. Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO J. 2000;19(5):989–996. doi:10.1093/emboj/19.5.98910698940
  • RenaG, WoodsYL, PrescottAR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J. 2002;21(9):2263–2271. doi:10.1093/emboj/21.9.226311980723
  • TangED, NunezG, BarrFG, GuanKL. Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem. 1999;274(24):16741–16746. doi:10.1074/jbc.274.24.1674110358014
  • DaitokuH, YamagataK, MatsuzakiH, HattaM, FukamizuA. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes. 2003;52(3):642–649. doi:10.2337/diabetes.52.3.64212606503
  • SchmollD, WalkerKS, AlessiDR, et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem. 2000;275(46):36324–36333. doi:10.1074/jbc.M00361620010960473
  • NakaeJ, KitamuraT, OgawaW, KasugaM, AcciliD. Insulin regulation of gene expression through the forkhead transcription factor Foxo1 (Fkhr) requires kinases distinct from Akt. Biochemistry. 2001;40(39):11768–11776. doi:10.1021/bi015532m11570877
  • WuY, PanQ, YanH, et al. Novel mechanism of Foxo1 phosphorylation in glucagon signaling in control of glucose homeostasis. Diabetes. 2018;67(11):2167–2182. doi:10.2337/db18-067430201683
  • RajanMR, NymanE, KjølhedeP, CedersundG, StrålforsP. Systems-wide experimental and modeling analysis of insulin signaling through forkhead box protein O1 (FOXO1) in human adipocytes, normally and in type 2 diabetes. J Biol Chem. 2016;291(30):15806–15819. doi:10.1074/jbc.M116.71576327226562
  • ArmoniM, HarelC, KarniS, et al. FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes. J Biol Chem. 2006;281(29):19881–19891. doi:10.1074/jbc.M60032020016670091
  • ZhaoX, GanL, PanH, et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J. 2004;378(3):839–849. doi:10.1042/bj2003145014664696
  • KitamuraYI, KitamuraT, KruseJ-P, et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2005;2(3):153–163. doi:10.1016/j.cmet.2005.08.00416154098
  • BrownawellAM, KopsGJPL, MacaraIG, BurgeringBMT. Inhibition of nuclear import by protein Kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol. 2001;21(10):3534–3546. doi:10.1128/MCB.21.10.3534-3546.200111313479
  • TzivionG, ShenYH, ZhuJ. 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene. 2001;20(44):6331–6338. doi:10.1038/sj.onc.120477711607836
  • RenaG, PrescottAR, GuoS, CohenP, UntermanTG. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J. 2001;354(3):605–612. doi:10.1042/bj354060511237865
  • CahillCM, TzivionG, NasrinN, et al. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem. 2001;276(16):13402–13410. doi:10.1074/jbc.M01004220011124266
  • WangQ, ShengX, ShiA, et al. β-glucans: relationships between modification, conformation and functional activities. Molecules. 2017;22(2):257. doi:10.3390/molecules22020257
  • XieY, LiX, GeJ. Cyclophilin A–FoxO1 signaling pathway in endothelial cell apoptosis. Cell Signal. 2019;61:57–65. doi:10.1016/j.cellsig.2019.04.01431063815
  • MatsuzakiH, DaitokuH, HattaM, TanakaK, FukamizuA. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci. 2003;100(20):11285–11290. doi:10.1073/pnas.193428310013679577
  • AwadH, NoletteN, HintonM, DakshinamurtiS. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol. 2014;49(9):885–897. doi:10.1002/ppul.2291924167160
  • YunH, ParkS, KimMJ, et al. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J. 2014;281(19):4421–4438. doi:10.1111/febs.1294925065674
  • ZouJ, HongL, LuoC, et al. Metformin inhibits estrogen-dependent endometrial cancer cell growth by activating the AMPK-FOXO1 signal pathway. Cancer Sci. 2016;107(12):1806–1817. doi:10.1111/cas.1308327636742
  • YadavH, DevalarajaS, ChungST, RaneSG. TGF-beta1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. J Biol Chem. 2017;292(8):3420–3432. doi:10.1074/jbc.M116.76491028069811
  • GreerEL, DowlatshahiD, BankoMR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007;17(19):1646–1656. doi:10.1016/j.cub.2007.08.04717900900
  • LehtinenMK, YuanZ, BoagPR, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125(5):987–1001. doi:10.1016/j.cell.2006.03.04616751106
  • YuanZ, LehtinenMK, MerloP, VillenJ, GygiS, BonniA. Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem. 2009;284(17):11285–11292. doi:10.1074/jbc.M90046120019221179
  • MaejimaY, IsobeM, SadoshimaJ. Mst1 stimulates cell protective mechanisms of FoxO1 through phosphorylation. J Card Fail. 2010;16(9):S133. doi:10.1016/j.cardfail.2010.07.017
  • MaejimaY, SadoshimaJ, IsobeM. Mst1 plays a cell-protective role in the heart through FoxO1 and C/EBP-β phosphorylation. J Card Fail. 2014;20(10):S147. doi:10.1016/j.cardfail.2014.07.099
  • DuX, ShiH, LiJ, et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1/Foxo3 stability in autoimmune disease. J Immunol. 2014;192(4):1525–1535. doi:10.4049/jimmunol.130106024453252
  • KimYH, ChoiJ, YangMJ, et al. A MST1–FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun. 2019;10(1).
  • YuanZ, BeckerEB, MerloP, et al. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science. 2008;319(5870):1665–1668. doi:10.1126/science.115233718356527
  • HuangH, ReganKM, LouZ, ChenJ, TindallDJ. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science. 2006;314(5797):294–297. doi:10.1126/science.113051217038621
  • LiuP, KaoTP, HuangH. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene. 2008;27(34):4733–4744. doi:10.1038/onc.2008.10418408765
  • LuY, WuY, FengX, et al. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. J Clin Invest. 2014. doi:10.1172/JCI63139
  • Ochodnicka-MackovicovaK, BahjatM, BloedjesTA, et al. NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood. 2015;126(11):1324–1335. doi:10.1182/blood-2015-01-62162326153519
  • WoodsYL, RenaG, MorriceN, et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J. 2001;355(3):597–607. doi:10.1042/bj355059711311120
  • OhshimaJ, WangQ, FitzsimondsZR, et al. Streptococcus gordoniiprograms epithelial cells to resist ZEB2 induction by Porphyromonas gingivalis. Proc Natl Acad Sci. 2019;116(17):8544–8553. doi:10.1073/pnas.190010111630971493
  • WakamatsuN, YamadaY, YamadaK, et al. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet. 2001;27(4):369–370. doi:10.1038/8686011279515
  • KimS, KimY, LeeJ, ChungJ. Regulation of FOXO1 by TAK1-nemo-like kinase pathway. J Biol Chem. 2010;285(11):8122–8129. doi:10.1074/jbc.M110.10182420061393
  • AsadaS, DaitokuH, MatsuzakiH, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007;19(3):519–527. doi:10.1016/j.cellsig.2006.08.01517113751
  • IyerNG, ÖzdagH, CaldasC. p300/CBP and cancer. Oncogene. 2004;23(24):4225–4231. doi:10.1038/sj.onc.120711815156177
  • DasC, LuciaMS, HansenKC, TylerJK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009;459(7243):113–117. doi:10.1038/nature0786119270680
  • DaitokuH, HattaM, MatsuzakiH, et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004;101(27):10042–10047. doi:10.1073/pnas.040059310115220471
  • MatsuzakiH, DaitokuH, HattaM, AoyamaH, YoshimochiK, FukamizuA. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A. 2005;102(32):11278–11283. doi:10.1073/pnas.050273810216076959
  • PerrotV, RechlerMM. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005;19(9):2283–2298. doi:10.1210/me.2004-029215890677
  • MottaMC, DivechaN, LemieuxM, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–563. doi:10.1016/S0092-8674(04)00126-614980222
  • MasuiK, TanakaK, AkhavanD, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–739. doi:10.1016/j.cmet.2013.09.01324140020
  • QiangL, BanksAS, AcciliD. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem. 2010;285(35):27396–27401. doi:10.1074/jbc.M110.14022820519497
  • BanksAS, KonN, KnightC, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8(4):333–341. doi:10.1016/j.cmet.2008.08.01418840364
  • FrescasD, ValentiL, AcciliD. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005;280(21):20589–20595. doi:10.1074/jbc.M41235720015788402
  • JingE, GestaS, KahnCR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–114. doi:10.1016/j.cmet.2007.07.00317681146
  • HariharanN, MaejimaY, NakaeJ, PaikJ, DepinhoRA, SadoshimaJ. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107(12):1470–1482. doi:10.1161/CIRCRESAHA.110.22737120947830
  • NakaeJ, CaoY, HakunoF, et al. Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 2012;31(10):2275–2295. doi:10.1038/emboj.2012.9722510882
  • ChoiD, OhKJ, HanHS, et al. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology. 2012;56(4):1546–1556. doi:10.1002/hep.2580922532369
  • BedfordMT, ClarkeSG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33(1):1–13. doi:10.1016/j.molcel.2008.12.01319150423
  • TakahashiY, DaitokuH, HirotaK, et al. Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab. 2011;13(5):505–516. doi:10.1016/j.cmet.2011.03.01721531333
  • YamagataK, DaitokuH, TakahashiY, et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 2008;32(2):221–231. doi:10.1016/j.molcel.2008.09.01318951090
  • HuangJ, DorseyJ, ChuikovS, et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem. 2010;285(13):9636–9641. doi:10.1074/jbc.M109.06258820118233
  • JiangZ, XingB, FengZ, MaJ, MaX, HuaX. Menin upregulates FOXO1 protein stability by repressing Skp2-mediated degradation in β cells. Pancreas. 2019;48(2):267–274. doi:10.1097/MPA.000000000000123930629029
  • HuangH, ReganKM, WangF, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A. 2005;102(5):1649–1654. doi:10.1073/pnas.040678910215668399
  • FuW, MaQ, ChenL, et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 2009;284(21):13987–14000. doi:10.1074/jbc.M90175820019321440
  • HallJA, TabataM, RodgersJT, PuigserverP. USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol Endocrinol. 2014;28(6):912–924. doi:10.1210/me.2013-142024694308
  • YangX, QianK. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18(7):452–465. doi:10.1038/nrm.2017.2228488703
  • ZhangX, QiaoY, WuQ, et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 2017;8:15280. doi:10.1038/ncomms1528028474680
  • PeterneljTT, MarshSA, MoraisC, et al. O-GlcNAc protein modification in C2C12 myoblasts exposed to oxidative stress indicates parallels with endogenous antioxidant defense. Biochem Cell Biol. 2015;93(1):63–73. doi:10.1139/bcb-2014-010625453190
  • KuoM, ZilberfarbV, GangneuxN, ChristeffN, IssadT. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie. 2008;90(5):679–685. doi:10.1016/j.biochi.2008.03.00518359296
  • HousleyMP, RodgersJT, UdeshiND, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 2008;283(24):16283–16292. doi:10.1074/jbc.M80224020018420577
  • CifarelliV, LeeS, KimDH, et al. FOXO1 mediates the autocrine effect of endothelin-1 on endothelial cell survival. Mol Endocrinol. 2012;26(7):1213–1224. doi:10.1210/me.2011-127622570335
  • FardiniY, MassonE, BoudahO, et al. O-GlcNAcylation of FoxO1 in pancreatic beta cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism. FASEB J. 2014;28(2):1010–1021. doi:10.1096/fj.13-23837824174424
  • FardiniY, Perez-CerveraY, CamoinL, PagesyP, LefebvreT, IssadT. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Biochem Biophys Res Commun. 2015;462(2):151–158. doi:10.1016/j.bbrc.2015.04.11425944660
  • HousleyMP, UdeshiND, RodgersJT, et al. A PGC-1α-O-GlcNAc transferase complex regulates foxo transcription factor activity in response to glucose. J Biol Chem. 2009;284(8):5148–5157. doi:10.1074/jbc.M80889020019103600
  • ShanS, ChatterjeeA, QiuY, HammesH-P, WielandT, FengY. O-GlcNAcylation of FoxO1 mediates nucleoside diphosphate kinase B deficiency induced endothelial damage. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-28892-y
  • ChenC-A, WangT-Y, VaradharajS, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115–1118. doi:10.1038/nature0959921179168
  • TownsendDM. S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv. 2007;7(6):313–324. doi:10.1124/mi.7.6.718199853
  • TsitsipatisD, LandrockMF, GopalK, KlotzL-O. Modulation of FoxO1a activity through S-glutathionylation? Free Radic Biol Med. 2015;86:S34. doi:10.1016/j.freeradbiomed.2015.07.119
  • YangJ-B, ZhaoZ-B, LiuQ-Z, et al. FoxO1 is a regulator of MHC-II expression and anti-tumor effect of tumor-associated macrophages. Oncogene. 2017;37(9):1192–1204. doi:10.1038/s41388-017-0048-429238041
  • FanW, ImamuraT, SonodaN, et al. FOXO1 transrepresses peroxisome proliferator-activated receptor γ transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem. 2009;284(18):12188–12197. doi:10.1074/jbc.M80891520019246449
  • NakaeJ, OkiM, CaoY. The FoxO transcription factors and metabolic regulation. FEBS Lett. 2008;582(1):54–67. doi:10.1016/j.febslet.2007.11.02518022395
  • NiYG, BerenjiK, WangN, et al. foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation. 2006;114(11):1159–1168. doi:10.1161/CIRCULATIONAHA.106.63712416952979
  • CalissiG, LamEWF, LinkW. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov. 2020;20(1):21–38.33173189
  • NiedanS, KauerM, AryeeDNT, et al. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma. Oncogene. 2013;33(30):3927–3938. doi:10.1038/onc.2013.36123995784
  • KodaniN, NakaeJ, KobayashiM, KikuchiO, KitamuraT, ItohH. FCoR-Foxo1 axis regulates α-cell mass through repression of arx expression. iScience. 2020;23(1):100798. doi:10.1016/j.isci.2019.10079831923647