184
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Gene Therapy for Rdh12-Associated Retinal Diseases Helps to Delay Retinal Degeneration and Vision Loss

, , ORCID Icon, , , & show all
Pages 3581-3591 | Published online: 17 Aug 2021

References

  • BelyaevaOV, KorkinaOV, StetsenkoAV, KimT, NelsonPS, KedishviliNY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic Efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry. 2005;44(18):7035–7047. doi:10.1021/bi050226k15865448
  • KurthI, ThompsonDA, RutherK, et al. Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. Research support, N.I.H., Extramural. Research support, Non-U.S. Gov’t. Mol Cell Biol. 2007;27(4):1370–1379. doi:10.1128/MCB.01486-0617130236
  • ChenC, ThompsonDA, KoutalosY. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. Research Support, N.I.H., Extramural. Research Support, Non-U.S. Gov’t. J Biol Chem. 2012;287(29):24662–24670. doi:10.1074/jbc.M112.35451422621924
  • HofmannL, TsybovskyY, AlexanderNS, et al. Structural insights into the drosophila melanogaster retinol dehydrogenase, a member of the short-chain dehydrogenase/reductase family. Biochemistry. 2016;55(47):6545–6557. doi:10.1021/acs.biochem.6b0090727809489
  • FahimAT, BouziaZ, BranhamKH, et al. Detailed clinical characterisation, unique features and natural history of autosomal recessive RDH12-associated retinal degeneration. Br J Ophthalmol. 2019;103(12):1789. doi:10.1136/bjophthalmol-2018-31358030979730
  • FeathersKL, JiaL, PereraND, et al. Development of a gene therapy vector for RDH12-associated retinal dystrophy. Hum Gene Ther. 2019;30(11):1325–1335. doi:10.1089/hum.2019.01731237438
  • GargA, LeeW, SengilloJD, AllikmetsR, GargK, TsangSH. Peripapillary sparing in RDH12-associated Leber congenital amaurosis. Ophthalmic Genet. 2017;38(6):575–579. doi:10.1080/13816810.2017.132333928513254
  • AlemanTS, UyhaziKE, SerranoLW, et al. RDH12 mutations cause a severe retinal degeneration with relatively spared rod function. Invest Ophthalmol Vis Sci. 2018;59(12):5225–5236. doi:10.1167/iovs.18-2470830372751
  • BainbridgeJWB, SmithAJ, BarkerSS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. New Eng J Med. 2008;358(21):2231–2239. doi:10.1056/NEJMoa080226818441371
  • FahimAT, ThompsonDA. Natural history and genotype-phenotype correlations in RDH12-associated retinal degeneration. Review. Adv Exp Med Biol. 2019;1185:209–213. doi:10.1007/978-3-030-27378-1_3431884613
  • KumaranN, MooreAT, WeleberRG, MichaelidesM. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101(9):1147–1154. doi:10.1136/bjophthalmol-2016-30997528689169
  • MaedaA, MaedaT, ImanishiY, et al. Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. Research support, N.I.H., Extramural research support, Non-U.S. Gov’t. J Biol Chem. 2006;281(49):37697–37704. doi:10.1074/jbc.M60837520017032653
  • ChrispellJD, FeathersKL, KaneMA, et al. Rdh12 activity and effects on retinoid processing in the murine retina. Research support, N.I.H., Extramural research support, non-U.S. Gov’t. J Biol Chem. 2009;284(32):21468–21477. doi:10.1074/jbc.M109.02096619506076
  • WenzelA, RemeCE, WilliamsTP, HafeziF, GrimmC. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci. 2001;21(1):53–58. doi:10.1523/jneurosci.21-01-00053.200111150319
  • CideciyanAV, JacobsonSG, BeltranWA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t. Proc Natl Acad Sci U S A. 2013;110(6):E517–25. doi:10.1073/pnas.121893311023341635
  • NishiguchiKM, CarvalhoLS, RizziM, et al. Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179. Nat Commun. 2015;6:6006. doi:10.1038/ncomms700625613321
  • GeorgiadisA, DuranY, RibeiroJ, et al. Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther. 2016;23(12):857–862. doi:10.1038/gt.2016.6627653967
  • WenzelA, GrimmC, MartiA, et al. c-fos controls the “private pathway” of light-induced apoptosis of retinal photoreceptors. J Neurosci. 2000;20(1):81–88. doi:10.1523/jneurosci.20-01-00081.200010627584
  • UenoS, NishiguchiKM, TaniokaH, et al. Degeneration of retinal on bipolar cells induced by serum including autoantibody against TRPM1 in mouse model of paraneoplastic retinopathy. PLoS One. 2013;8(11):e81507–e81507. doi:10.1371/journal.pone.008150724282602
  • PoonAWH, MaEXH, VadivelA, et al. Impact of bronchopulmonary dysplasia on brain and retina. Biol Open. 2016;5(4):475–483. doi:10.1242/bio.01766526988760
  • HuangF, ZhangL, WangQ, et al. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice. Invest Ophthalmol Vis Sci. 2018;59(6):2623–2634. doi:10.1167/iovs.17-2257829847669
  • MichalakisS, MühlfriedelR, TanimotoN, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther. 2010;18(12):2057–2063. doi:10.1038/mt.2010.14920628362
  • JacobsGH, FenwickJC, CalderoneJB, DeebSS. Human cone pigment expressed in transgenic mice yields altered vision. J Neurosci. 1999;19(8):3258–3265. doi:10.1523/jneurosci.19-08-03258.199910191338
  • JacobsGH, WilliamsGA, CahillH, NathansJ. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science. 2007;315(5819):1723. doi:10.1126/science.113883817379811
  • MüllerPL, BirtelJ, HerrmannP, HolzFG, Charbel IssaP, GliemM. Functional relevance and structural correlates of near infrared and short wavelength fundus autofluorescence imaging in ABCA4-related retinopathy. Transl Vis Sci Technol. 2019;8(6):46. doi:10.1167/tvst.8.6.46
  • PichiF, AbboudEB, GhaziNG, KhanAO. Fundus autofluorescence imaging in hereditary retinal diseases. Acta Ophthalmol. 2018;96(5):e549–e561. doi:10.1111/aos.1360229098804
  • MakiyamaY, OotoS, HangaiM, et al. Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2014;157(3):558–570.e4. doi:10.1016/j.ajo.2013.10.02124246574
  • CicinelliMV, BattistaM, StaraceV, Battaglia ParodiM, BandelloF. Monitoring and management of the patient with Stargardt disease. Clin Ophthalmol. 2019;11:151–165. doi:10.2147/opto.s226595
  • NatkunarajahM, TrittibachP, McIntoshJ, et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther. 2008;15(6):463–467. doi:10.1038/sj.gt.330307418004402
  • DarrowJJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019;24(4):949–954. doi:10.1016/j.drudis.2019.01.01930711576
  • GalantuomoMS, FossarelloM, CuccuA, et al. Rebound macular edema following oral acetazolamide therapy for juvenile X-linked retinoschisis in an Italian family. Clin Ophthalmol. 2016;10:2377–2382. doi:10.2147/opth.s11456827932860
  • NapoliPE, NioiM, MangoniL, et al. Fourier-domain OCT imaging of the ocular surface and tear film dynamics: a review of the state of the art and an integrative model of the tear behavior during the inter-blink period and visual fixation. J Clin Med. 2020;9(3):668. doi:10.3390/jcm9030668
  • GorbatyukMS, KnoxT, LavailMM, et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci U S A. 2010;107(13):5961–5966. doi:10.1073/pnas.091199110720231467
  • DalkaraD, KolstadKD, GuerinKI, et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol Ther. 2011;19(9):1602–1608. doi:10.1038/mt.2011.6221522134
  • OhnakaM, MikiK, GongYY, et al. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem. 2012;122(5):1047–1053. doi:10.1111/j.1471-4159.2012.07842.x22726126
  • Ba-AbbadR, ArnoG, RobsonAG, BourasK, MichaelidesM. Macula-predominant retinopathy associated with biallelic variants in RDH12. Ophthalmic Genet. 2020;41:612–615.32790509