140
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Study on the Inhibitory Effect of Curcumin on GBM and Its Potential Mechanism

, , , ORCID Icon &
Pages 2769-2781 | Published online: 28 Jun 2021

References

  • McNeillKA. Epidemiology of brain tumors. Neurol Clin. 2016;34(4):981–998. doi:10.1016/j.ncl.2016.06.01427720005
  • OstromQT, GittlemanH, FarahP, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2(Suppl2):ii1–ii56. doi:10.1093/neuonc/not15124137015
  • SasmitaAO, WongYP, LingAPK. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac J Clin Oncol. 2018;14(1):40–51. doi:10.1111/ajco.1275628840962
  • SaboB. Primary malignant brain tumours, psychosocial distress and the intimate partner experience: what do we know? Can J Neurosci Nurs. 2014;36(3):9–15.25638913
  • ZlotogorskiA, DayanA, DayanD, ChaushuG, SaloT, VeredM. Nutraceuticals as new treatment approaches for oral cancer--I: curcumin. Oral Oncol. 2013;49(3):187–191. doi:10.1016/j.oraloncology.2012.09.01523116961
  • ZhuJY, YangX, ChenY, et al. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother Res. 2017;31(4):680–688. doi:10.1002/ptr.579128198062
  • McFaddenRM, LarmonierCB, ShehabKW, et al. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 2015;21(11):2483–2494. doi:10.1097/MIB.000000000000052226218141
  • MittalL, AryalUK, CamarilloIG, RamanV, SundararajanR. Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: a global proteomics study. Bioelectrochemistry. 2020;131:107350. doi:10.1016/j.bioelechem.2019.10735031518962
  • WangZ, LiuF, LiaoW, et al. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch Biochem Biophys. 2020;689:108412. doi:10.1016/j.abb.2020.10841232445778
  • ZhaoJ, ZhuJ, LvX, et al. Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-κB/COX-2 signaling pathways. Onco Targets Ther. 2017;10:5471–5482. doi:10.2147/OTT.S14970829180881
  • HesariA, RezaeiM, RezaeiM, et al. Effect of curcumin on glioblastoma cells. J Cell Physiol. 2019;234(7):10281–10288. doi:10.1002/jcp.2793330585634
  • MaC, ZhuangZ, SuQ, HeJ, LiH. Curcumin has anti-proliferative and pro-apoptotic effects on tongue cancer in vitro: a Study with Bioinformatics Analysis and in vitro experiments. Drug Des Devel Ther. 2020;14:509–518. doi:10.2147/DDDT.S237830
  • GabrielyG, WheelerMA, TakenakaMC, QuintanaFJ. Role of AHR and HIF-1α in glioblastoma metabolism. Trends Endocrinol Metab. 2017;28(6):428–436. doi:10.1016/j.tem.2017.02.00928318896
  • MullerFL, CollaS, AquilantiE, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature. 2012;488(7411):337–342. doi:10.1038/nature1133122895339
  • JiangBH, AganiF, PassanitiA, SemenzaGL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 1997;57(23):5328–5335.9393757
  • TrojanowiczB, WinklerA, HammjeK, et al. Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol. 2009;42(3):249–260. doi:10.1677/JME-08-011819060179
  • GaoJ, ZhaoR, XueY, et al. Role of enolase-1 in response to hypoxia in breast cancer: exploring the mechanisms of action. Oncol Rep. 2013;29(4):1322–1332. doi:10.3892/or.2013.226923381546
  • SharmaNK, SethyNK, BhargavaK. Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics. 2013;79:277–298. doi:10.1016/j.jprot.2012.12.02023313218
  • SongY, LuoQ, LongH, et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer. 2014;13:65. doi:10.1186/1476-4598-13-6524650096
  • YeoEJ, ChunYS, ChoYS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst. 2003;95(7):516–525. doi:10.1093/jnci/95.7.51612671019
  • SanzeyM, Abdul RahimSA, OudinA, et al. Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS One. 2015;10(5):e0123544. doi:10.1371/journal.pone.012354425932951
  • ChenS, ZhangY, WangH, et al. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death Dis. 2018;9(3):347. doi:10.1038/s41419-018-0376-529497031
  • DaiJ, ZhouQ, ChenJ, Rexius-HallML, RehmanJ, ZhouG. Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat Commun. 2018;9(1):3850. doi:10.1038/s41467-018-06376-x30242159
  • PrincipeM, BorgoniS, CascioneM, et al. Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis. J Hematol Oncol. 2017;10(1):16. doi:10.1186/s13045-016-0385-828086938
  • GaoS, LiH, FengXJ, et al. α-Enolase plays a catalytically independent role in doxorubicin-induced cardiomyocyte apoptosis and mitochondrial dysfunction. J Mol Cell Cardiol. 2015;79:92–103. doi:10.1016/j.yjmcc.2014.11.00725446184