172
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Combination Therapy of Metastatic Castration-Recurrent Prostate Cancer: Hyaluronic Acid Decorated, Cabazitaxel-Prodrug and Orlistat Co-Loaded Nano-System

, , , , &
Pages 3605-3616 | Published online: 20 Aug 2021

References

  • SiegelR, DeSantisC, VirgoK, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–241. doi:10.3322/caac.2114922700443
  • CenterMM, JemalA, Lortet-TieulentJ, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–1092. doi:10.1016/j.eururo.2012.02.05422424666
  • LoblawDA, VirgoKS, NamR, et al.; American Society of Clinical Oncology. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2007;25(12):1596–1605. doi:10.1200/JCO.2006.10.194917404365
  • HussainM, TangenCM, HiganoC, et al.; Southwest Oncology Group Trial 9346 (INT-0162). Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol. 2006;24(24):3984–3990. doi:10.1200/JCO.2006.06.424616921051
  • de BonoJS, OudardS, OzgurogluM, et al.; TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–1154. doi:10.1016/S0140-6736(10)61389-X20888992
  • MelladoB, JimenezN, Marin-AguileraM, ReigO. Diving into cabazitaxel’s mode of action: more than a taxane for the treatment of castration-resistant prostate cancer patients. Clin Genitourin Cancer. 2016;14(4):265–270. doi:10.1016/j.clgc.2015.12.03026827258
  • FitzpatrickJM, de WitR. Taxane mechanisms of action: potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. Eur Urol. 2014;65(6):1198–1204. doi:10.1016/j.eururo.2013.07.02223910941
  • VrignaudP, SémiondD, LejeuneP, et al. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res. 2013;19(11):2973–2983. doi:10.1158/1078-0432.CCR-12-314623589177
  • CoorsEA, SeyboldH, MerkHF, MahlerV. Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions. Ann Allergy Asthma Immunol. 2005;95(6):593–599. doi:10.1016/S1081-1206(10)61024-116400901
  • FernándezO, AfonsoJ, VázquezS, et al. Metastatic castration-resistant prostate cancer: changing landscape with cabazitaxel. Anticancer Drugs. 2014;25(3):237–243. doi:10.1097/CAD.000000000000004524217332
  • PallerCJ, AntonarakisES. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Devel Ther. 2011;5:117–124.
  • SouzaC, PellosiDS, TedescoAC. Prodrugs for targeted cancer therapy. Expert Rev Anticancer Ther. 2019;19(6):483–502. doi:10.1080/14737140.2019.161589031055990
  • ShuaiQ, ZhaoG, LianX, et al. Self-assembling poly(ethylene glycol)-block-polylactide-cabazitaxel conjugate nanoparticles for anticancer therapy with high efficacy and low in vivo toxicity. Int J Pharm. 2020;574:118879. doi:10.1016/j.ijpharm.2019.11887931770581
  • HoangB, ErnstingMJ, TangWS, et al. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017;410:169–179. doi:10.1016/j.canlet.2017.09.02928965854
  • ZhangX, LiX, YouQ, ZhangX. Prodrug strategy for cancer cell-specific targeting: a recent overview. Eur J Med Chem. 2017;139:542–563. doi:10.1016/j.ejmech.2017.08.01028837920
  • HuangWY, LinJN, HsiehJT, et al. Nanoparticle targeting CD44-positive cancer cells for site-specific drug delivery in prostate cancer therapy. ACS Appl Mater Interfaces. 2016;8(45):30722–30734. doi:10.1021/acsami.6b1002927786455
  • SouchekJJ, WojtynekNE, PayneWM, et al. Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater. 2018;75:323–333. doi:10.1016/j.actbio.2018.06.01629890268
  • SkarmoutsosI, SkarmoutsosA, KatafigiotisI, et al. Hyaluronic acid and hyaluronidase as possible novel urine biomarkers for the diagnosis of prostate cancer. Med Oncol. 2018;35(7):97. doi:10.1007/s12032-018-1157-929802604
  • MahiraS, KommineniN, HusainGM, KhanW. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: a new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother. 2019;110:803–817. doi:10.1016/j.biopha.2018.11.14530554119
  • SouchekJJ, DavisAL, HillTK, et al. Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhances microtubule stability in taxane-resistant prostate cancer cells. Mol Cancer Ther. 2017;16(9):1819–1830. doi:10.1158/1535-7163.MCT-17-001328615298
  • MenendezJA, VellonL, ColomerR, LupuR. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer. 2005;115(1):19–35. doi:10.1002/ijc.2075415657900
  • MenendezJA, LupuR, ColomerR. Inhibition of tumor-associated fatty acid synthase hyperactivity induces synergistic chemosensitization of HER −2/ neu-overexpressing human breast cancer cells to docetaxel (taxotere). Breast Cancer Res Treat. 2004;84(2):183–195. doi:10.1023/B:BREA.0000018409.59448.6014999148
  • MeenaAS, SharmaA, KumariR, MohammadN, SinghSV, BhatMK. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One. 2013;8(4):e61524. doi:10.1371/journal.pone.006152423613870
  • HillTK, DavisAL, WheelerFB, et al. Development of a self-assembled nanoparticle formulation of orlistat, nano-ORL, with increased cytotoxicity against human tumor cell lines. Mol Pharm. 2016;13(3):720–728. doi:10.1021/acs.molpharmaceut.5b0044726824142
  • LuG, CaoL, ZhuC, et al. Improving lung cancer treatment: hyaluronic acid-modified and glutathione-responsive amphiphilic TPGS-doxorubicin prodrug-entrapped nanoparticles. Oncol Rep. 2019;42(1):361–369.31059082
  • GuoS, ZhangY, WuZ, et al. Synergistic combination therapy of lung cancer: cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-demethylnobiletin. Biomed Pharmacother. 2019;118:109225. doi:10.1016/j.biopha.2019.10922531325705
  • LiuJ, ChengH, HanL, et al. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2018;12:3199–3209. doi:10.2147/DDDT.S172199
  • WangJ, SuG, YinX, et al. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: in vitro and in vivo evaluation. Biomed Pharmacother. 2019;120:109493. doi:10.1016/j.biopha.2019.10949331586902
  • YangB, WangK, ZhangD, et al. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy. Biomater Sci. 2018;6(11):2965–2975. doi:10.1039/C8BM00899J30255178
  • ZhangL, ChanJM, GuFX, et al. Self-assembled lipid–polymer hybrid nanoparticles: a delivery platform. ACS Nano. 2008;2(8):1696–1702. doi:10.1021/nn800275r19206374
  • RoeseE, BunjesH. Drug release studies from lipid nanoparticles in physiological media by a new DSC method. J Control Release. 2017;256:92–100. doi:10.1016/j.jconrel.2017.04.03228450207
  • WangH, SunG, ZhangZ, OuY. Transcription activator, hyaluronic acid and tocopheryl succinate multi-functionalized novel lipid carriers encapsulating etoposide for lymphoma therapy. Biomed Pharmacother. 2017;91:241–250. doi:10.1016/j.biopha.2017.04.10428460227
  • ZhangK, LvS, LiX, et al. Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin. Int J Nanomedicine. 2013;8:3227–3239. doi:10.2147/IJN.S4503124009420
  • KimDH, KimJY, KimRM, et al. Orlistat-loaded solid SNEDDS for the enhanced solubility, dissolution, and in vivo performance. Int J Nanomedicine. 2018;13:7095–7106. doi:10.2147/IJN.S18117530464461
  • SunY, ZhaoY, TengS, et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine. 2018;14:135–148. doi:10.2147/IJN.S18129630613142
  • ChenY, DengY, ZhuC, XiangC. Anti prostate cancer therapy: aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2020;127:110181. doi:10.1016/j.biopha.2020.11018132416561
  • LiW, QianL, LinJ, et al. CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget. 2017;8(39):65143–65151. doi:10.18632/oncotarget.1782129029419
  • SenbanjoLT, AlJohaniH, MajumdarS, ChellaiahMA. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal. 2019;17(1):80. doi:10.1186/s12964-019-0395-631331331
  • PaulmuruganR, BhethanabotlaR, MishraK, et al. Folate receptor-targeted polymeric micellar nanocarriers for delivery of orlistat as a repurposed drug against triple-negative breast cancer. Mol Cancer Ther. 2016;15(2):221–231. doi:10.1158/1535-7163.MCT-15-057926553061
  • ChouTC, TalalayP. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi:10.1016/0065-2571(84)90007-46382953
  • WangG, WangZ, LiC, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–284. doi:10.1016/j.biopha.2018.06.13729966971
  • WanZ, XieF, WangL, ZhangG, ZhangH. Preparation and evaluation of cabazitaxel-loaded bovine serum albumin nanoparticles for prostate cancer. Int J Nanomedicine. 2020;15:5333–5344. doi:10.2147/IJN.S25885632801692
  • FusserM, ØverbyeA, PandyaAD, et al. Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release. 2019;293:183–192. doi:10.1016/j.jconrel.2018.11.02930529259
  • WuM, WangY, WangY, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine. 2017;12:5313–5330. doi:10.2147/IJN.S13603228794625
  • TranTH, ChoiJY, RamasamyT, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym. 2014;114:407–415. doi:10.1016/j.carbpol.2014.08.02625263908
  • LiangZ, LiJ, ZhuB. Lung cancer combination treatment: evaluation of the synergistic effect of cisplatin prodrug, vinorelbine and retinoic acid when co-encapsulated in a multi-layered nano-platform. Drug Des Devel Ther. 2020;14:4519–4531. doi:10.2147/DDDT.S251749
  • WangB, HuW, YanH, et al. Lung cancer chemotherapy using nanoparticles: enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother. 2021;136:111249. doi:10.1016/j.biopha.2021.11124933450493
  • YanJ, WangY, JiaY, et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother. 2017;88:374–383. doi:10.1016/j.biopha.2016.12.13828122302
  • LiM, FengS, XingH, SunY. Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipid-polymer hybrid nanoparticles, which performed better for local anesthetic therapy?Drug Deliv. 2020;27(1):1452–1460. doi:10.1080/10717544.2020.183110533100057
  • GaoZ, LiZ, YanJ, WangP. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther. 2017;11:2595–2604. doi:10.2147/DDDT.S140797
  • ZhangT, MaJ, LiC, et al. Core-shell lipid polymer nanoparticles for combined chemo and gene therapy of childhood head and neck cancers. Oncol Rep. 2017;37(3):1653–1661. doi:10.3892/or.2017.536528098869
  • ShaoY, LuoW, GuoQ, LiX, ZhangQ, LiJ. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–2055. doi:10.2147/DDDT.S202818
  • ZhangY, ZhangP, ZhuT. Ovarian carcinoma biological nanotherapy: comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery. Biomed Pharmacother. 2019;109:475–483. doi:10.1016/j.biopha.2018.10.15830399584
  • ZhangR, RuY, GaoY, LiJ, MaoS. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des Devel Ther. 2017;11:2631–2642. doi:10.2147/DDDT.S143047
  • WangJ. Combination treatment of cervical cancer using folate-decorated, pH-sensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2020;14:823–832. doi:10.2147/DDDT.S235098