152
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Metformin in Combination with Malvidin Prevents Progression of Non-Alcoholic Fatty Liver Disease via Improving Lipid and Glucose Metabolisms, and Inhibiting Inflammation in Type 2 Diabetes Rats

ORCID Icon, , ORCID Icon, &
Pages 2565-2576 | Published online: 17 Jun 2021

References

  • GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England). 2017;390(10100):1211–1259.
  • MäkimattilaS, VirkamäkiA, GroopPH, et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation. 1996;94(6):1276–1282. doi:10.1161/01.CIR.94.6.12768822980
  • BelloNA, PfefferMA, SkaliH, et al. Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Res Care. 2014;2(1):e000011. doi:10.1136/bmjdrc-2013-000011
  • CheungO, SanyalAJ. Recent advances in nonalcoholic fatty liver disease. Curr Opin Gastroenterol. 2009;25(3):230–237. doi:10.1097/MOG.0b013e3283294a1819396962
  • AbenavoliL, MilicN, Di RenzoL, PrevedenT, Medić-StojanoskaM, De LorenzoA. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J Gastroenterol. 2016;22(31):7006–7016. doi:10.3748/wjg.v22.i31.700627610012
  • MantovaniA, ZoppiniG, TargherG, GoliaG, BonoraE. Non-alcoholic fatty liver disease is independently associated with left ventricular hypertrophy in hypertensive Type 2 diabetic individuals. J Endocrinol Invest. 2012;35(2):215–218. doi:10.1007/BF0334542122490991
  • LiuD, WongCC, FuL, et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018;10:437. doi:10.1126/scitranslmed.aap9840
  • KelleyDE, McKolanisTM, HegaziRA, KullerLH, KalhanSC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285(4):E906–16. doi:10.1152/ajpendo.00117.200312959938
  • DharmalingamM, YamasandhiPG. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocrinol Metab. 2018;22(3):421–428. doi:10.4103/ijem.IJEM_585_1730090738
  • ZhangC, LuX, TanY, et al. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS One. 2012;7(12):e49257. doi:10.1371/journal.pone.004925723251339
  • FordRJ, FullertonMD, PinkoskySL, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468(1):125–132. doi:10.1042/BJ2015012525742316
  • PektaşMB, SadiG, KocaHB, et al. Resveratrol ameliorates the components of hepatic inflammation and apoptosis in a rat model of streptozotocin-induced diabetes. Drug Dev Res. 2016;77(1):12–19. doi:10.1002/ddr.2128726748675
  • JiangC, WangY, JinQ, et al. Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the rho-kinase-dependent pathway. Front Pharmacol. 2019;10:811. doi:10.3389/fphar.2019.0081131404259
  • SaremiA, AllisonM, DitomassoD, et al. Preliminary report: hepatic fat and inflammation in type 2 diabetes mellitus. Metab Clin Exp. 2010;59(3):430–432. doi:10.1016/j.metabol.2009.07.04119850309
  • ForetzM, GuigasB, BertrandL, PollakM, ViolletB. Metformin: from mechanisms of action to therapies. Cell Metabolism. 2014;20(6):953–966. doi:10.1016/j.cmet.2014.09.01825456737
  • TeranishiT, OharaT, MaedaK, et al. Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Met Clin Exp. 2007;56(10):1418–1424. doi:10.1016/j.metabol.2007.06.005
  • LiYL, LiXQ, WangYD, ShenC, ZhaoCY. Metformin alleviates inflammatory response in non-alcoholic steatohepatitis by restraining signal transducer and activator of transcription 3-mediated autophagy inhibition in vitro and in vivo. Biochem Biophys Res Commun. 2019;513(1):64–72. doi:10.1016/j.bbrc.2019.03.07730935688
  • BurtonJH, JohnsonM, JohnsonJ, HsiaDS, GreenwayFL, HeimanML. Addition of a gastrointestinal microbiome modulator to metformin improves metformin tolerance and fasting glucose levels. J Diabetes Sci Technol. 2015;9(4):808–814. doi:10.1177/193229681557742525802471
  • Zamani-GarmsiriF, HashemniaSMR, ShabaniM, BagheriehM, EmamgholipourS, MeshkaniR. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice. J Nutr Biochem. 2021;87:108505. doi:10.1016/j.jnutbio.2020.10850532956824
  • SekarV, ManiS, MalarvizhiR, NithyaP, VasanthiHR. Antidiabetic effect of mangiferin in combination with oral hypoglycemic agents metformin and gliclazide. Phytomed Int J Phytother Phytopharmaco. 2019;59:152901. doi:10.1016/j.phymed.2019.152901
  • ChenZ, WangC, PanY, GaoX, ChenH. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Function. 2018;9(1):426–439. doi:10.1039/C7FO00983F29220052
  • SolversonPM, HendersonTR, DebeloH, FerruzziMG, BaerDJ, NovotnyJA. An anthocyanin-rich mixed-berry intervention may improve insulin sensitivity in a randomized trial of overweight and obese adults. Nutrients. 2019;11(12):2876. doi:10.3390/nu11122876
  • NakanoH, WuS, SakaoK, et al. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis. Nutrients. 2020;12(11):3252. doi:10.3390/nu12113252
  • BognarE, SarszegiZ, SzaboA, et al. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol. PLoS One. 2013;8(6):e65355. doi:10.1371/journal.pone.006535523755222
  • WeiH, LiH, WanSP, et al. Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: a Mechanistic Study. Med Sci Monitor Int Med J Exp Clin Res. 2017;23:2007–2016. doi:10.12659/MSM.902196
  • SakthivelKM, KokilavaniK, KathirvelanC, BrindhaD. Malvidin abrogates oxidative stress and inflammatory mediators to inhibit solid and ascitic tumor development in mice. J Environ Pathol Toxicol Oncol. 2020;39(3):247–260. doi:10.1615/JEnvironPatholToxicolOncol.202003443032865916
  • PaixãoJ, DinisTC, AlmeidaLM. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem Biol Interact. 2012;199(3):192–200. doi:10.1016/j.cbi.2012.08.01322959858
  • WangY, LinJ, TianJ, et al. Blueberry Malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J Agricultural Food Chem. 2019;67(2):625–636. doi:10.1021/acs.jafc.8b06209
  • KonermanMA, JonesJC, HarrisonSA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018;68(2):362–375. doi:10.1016/j.jhep.2017.10.01529122694
  • SongD, YinL, WangC, WenX. Zhenqing recipe attenuates non-alcoholic fatty liver disease by regulating the SIK1/CRTC2 signaling in experimental diabetic rats. BMC Complementary Med Therapies. 2020;20(1):27. doi:10.1186/s12906-019-2811-2
  • SrinivasanK, ViswanadB, AsratL, KaulCL, RamaraoP. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313–320. doi:10.1016/j.phrs.2005.05.00415979893
  • WangY, ViscarraJ, KimSJ, SulHS. Transcriptional regulation of hepatic lipogenesis. Nature Rev Mol Cell Biol. 2015;16(11):678–689. doi:10.1038/nrm407426490400
  • SumidaY, YonedaM. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–376. doi:10.1007/s00535-017-1415-129247356
  • WangJ, ZhangY, ZhuoQ, et al. TET1 promotes fatty acid oxidation and inhibits NAFLD progression by hydroxymethylation of PPARα promoter. Nutr Metab. 2020;17:46. doi:10.1186/s12986-020-00466-8
  • FangK, WuF, ChenG, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med. 2019;19(1):255. doi:10.1186/s12906-019-2671-931519174
  • GoedekeL, BatesJ, VatnerDF, et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology (Baltimore, Md. 2018;68(6):2197–2211. doi:10.1002/hep.30097
  • WatanabeM, HoutenSM, WangL, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–1418. doi:10.1172/JCI2102515146238
  • PawlakM, LefebvreP, StaelsB. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–733. doi:10.1016/j.jhep.2014.10.03925450203
  • KerstenS, SeydouxJ, PetersJM, GonzalezFJ, DesvergneB, WahliW. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999;103(11):1489–1498. doi:10.1172/JCI622310359558
  • DayCP, JamesOF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. doi:10.1016/S0016-5085(98)70599-29547102
  • ManneV, HandaP, KowdleyKV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22(1):23–37. doi:10.1016/j.cld.2017.08.00729128059
  • CobbinaE, AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 2017;49(2):197–211. doi:10.1080/03602532.2017.129368328303724
  • TilgH, MoschenAR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology (Baltimore, Md. 2010;52(5):1836–1846. doi:10.1002/hep.24001
  • BodenG, SheP, MozzoliM, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54(12):3458–3465. doi:10.2337/diabetes.54.12.345816306362
  • HanP, CuiQ, LuW, et al. Hepatocyte growth factor plays a dual role in tendon-derived stem cell proliferation, migration, and differentiation. J Cell Physiol. 2019;234(10):17382–17391. doi:10.1002/jcp.2836030807656
  • KloverPJ, MooneyRA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol. 2004;36(5):753–758. doi:10.1016/j.biocel.2003.10.00215061128