279
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Mechanism of Tetrandrine Against Endometrial Cancer Based on Network Pharmacology

, , , , , , & show all
Pages 2907-2919 | Published online: 06 Jul 2021

References

  • SiegelRL, MillerKD, FuchsHE, JemalA. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.2165433433946
  • LuKH, BroaddusRR, LongoDL. Endometrial Cancer. N Engl J Med. 2020;383(21):2053–2064. doi:10.1056/NEJMra151401033207095
  • EritjaN, YeramianA, ChenBJ, et al. Endometrial carcinoma: specific targeted pathways. Adv Exp Med Biol. 2017;943:149–207.27910068
  • XiangY, GuoZ, ZhuP, ChenJ, HuangY. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019;8(5):1958–1975. doi:10.1002/cam4.210830945475
  • BhagyaNC, ChandrashekarKR. Tetrandrine and cancer - An overview on the molecular approach. Biomed Pharmacother. 2018;97:624–632. doi:10.1016/j.biopha.2017.10.11629101806
  • BhagyaN, ChandrashekarKR. Tetrandrine--A molecule of wide bioactivity. Phytochemistry. 2016;125:5–13. doi:10.1016/j.phytochem.2016.02.00526899361
  • ZhangH, XieB, ZhangZ, ShengX, ZhangS. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Devel Ther. 2019;13:119–127. doi:10.2147/DDDT.S187776
  • LinYJ, PengSF, LinML, et al. Tetrandrine induces apoptosis of human nasopharyngeal carcinoma NPC-TW 076 cells through reactive oxygen species accompanied by an endoplasmic reticulum stress signaling pathway. Molecules. 2016;21(10):1353. doi:10.3390/molecules21101353
  • YuB, YuanB, LiJ, et al. JNK and autophagy independently contributed to cytotoxicity of arsenite combined with tetrandrine via modulating cell cycle progression in human breast cancer cells. Front Pharmacol. 2020;11:1087. doi:10.3389/fphar.2020.0108732765280
  • WuK, ZhouM, WuQX, et al. The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int J Oncol. 2015;46(3):1205–1213. doi:10.3892/ijo.2014.280025524807
  • LienJC, LinMW, ChangSJ, et al. Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. Environ Toxicol. 2017;32(1):329–343. doi:10.1002/tox.2223826822499
  • KouB, LiuW, HeW, et al. Tetrandrine suppresses metastatic phenotype of prostate cancer cells by regulating Akt/mTOR/MMP-9 signaling pathway. Oncol Rep. 2016;35(5):2880–2886. doi:10.3892/or.2016.464926935264
  • PoornimaP, KumarJD, ZhaoQ, BlunderM, EfferthT. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res. 2016;111:290–302. doi:10.1016/j.phrs.2016.06.01827329331
  • KibbleM, SaarinenN, TangJ, WennerbergK, MakelaS, AittokallioT. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–1266. doi:10.1039/C5NP00005J26030402
  • YuanH, MaQ, CuiH, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017;22(7):1135. doi:10.3390/molecules22071135
  • RuJ, LiP, WangJ, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi:10.1186/1758-2946-6-1324735618
  • LiuX, OuyangS, YuB, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(suppl_2):W609–14. doi:10.1093/nar/gkq30020430828
  • WangX, PanC, GongJ, LiuX, LiH. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model. 2016;56(6):1175–1183. doi:10.1021/acs.jcim.5b0069027187084
  • WangX, ShenY, WangS, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356–W60. doi:10.1093/nar/gkx37428472422
  • BrownJS, BanerjiU. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 2017;172:101–115. doi:10.1016/j.pharmthera.2016.12.00127919797
  • MacKintoshML, CrosbieEJ. Prevention strategies in endometrial carcinoma. Curr Oncol Rep. 2018;20(12):101. doi:10.1007/s11912-018-0747-130426278
  • LiuWY, ZhangJW, YaoXQ, et al. Shenmai injection enhances the cytotoxicity of chemotherapeutic drugs against colorectal cancers via improving their subcellular distribution. Acta Pharmacol Sin. 2017;38(2):264–276. doi:10.1038/aps.2016.9927867186
  • ZhangR, ZhuX, BaiH, NingK. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front Pharmacol. 2019;10:123. doi:10.3389/fphar.2019.0012330846939
  • MohammadRM, MuqbilI, LoweL, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35 Suppl:S78–S103.25936818
  • AshkenaziA, FairbrotherWJ, LeversonJD, SouersAJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–284. doi:10.1038/nrd.2016.25328209992
  • CampbellKJ, TaitSWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8(5):180002. doi:10.1098/rsob.18000229769323
  • JankuF, YapTA, Meric-BernstamF. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–291. doi:10.1038/nrclinonc.2018.2829508857
  • AlzahraniAS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–132. doi:10.1016/j.semcancer.2019.07.00931323288
  • SongM, BodeAM, DongZ, LeeMH. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019;79(6):1019–1031. doi:10.1158/0008-5472.CAN-18-273830808672
  • SlomovitzBM, ColemanRL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–5864. doi:10.1158/1078-0432.CCR-12-066223082003