258
Views
12
CrossRef citations to date
0
Altmetric
Review

Inhibitors Targeting YAP in Gastric Cancer: Current Status and Future Perspectives

, , , &
Pages 2445-2456 | Published online: 09 Jun 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71(3):209–249.33538338
  • HarveyKF, ZhangX, ThomasDM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–257. doi:10.1038/nrc345823467301
  • PanD. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505. doi:10.1016/j.devcel.2010.09.01120951342
  • YuF-X, MengZ, PlouffeSW, GuanK-L. Hippo pathway regulation of gastrointestinal tissues. Annu Rev Physiol. 2015;77(1):201–227. doi:10.1146/annurev-physiol-021014-07173325293527
  • YuF-X, ZhaoB, GuanK-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–828. doi:10.1016/j.cell.2015.10.04426544935
  • NguyenCDK, YiC. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer. 2019;5(5):283–296. doi:10.1016/j.trecan.2019.02.01031174841
  • SteinhardtAA, GayyedMF, KleinAP, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol. 2008;39(11):1582–1589. doi:10.1016/j.humpath.2008.04.01218703216
  • TremblayAM, CamargoFD. Hippo signaling in mammalian stem cells. Semin Cell Dev Biol. 2012;23(7):818–826. doi:10.1016/j.semcdb.2012.08.00123034192
  • StaleyBK, IrvineKD. Hippo signaling in Drosophila: recent advances and insights. Dev Dyn. 2012;241(1):3–15. doi:10.1002/dvdy.2272322174083
  • YuF-X, GuanK-L. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27(4):355–371. doi:10.1101/gad.210773.11223431053
  • MengZ, MoroishiT, GuanK-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17. doi:10.1101/gad.274027.11526728553
  • ZhaoY, KhanalP, SavageP, SheYM, CyrTD, YangX. YAP-induced resistance of cancer cells to antitubulin drugs is modulated by a Hippo-independent pathway. Cancer Res. 2014;74(16):4493–4503. doi:10.1158/0008-5472.CAN-13-271224812269
  • YeungB, KhanalP, MehtaV, Trinkle-MulcahyL, YangX. Identification of Cdk1-LATS-Pin1 as a novel signaling axis in anti-tubulin drug response of cancer cells. Mol Cancer Res. 2018;16(6):1035–1045. doi:10.1158/1541-7786.MCR-17-068429523761
  • HuangC, YuanW, LaiC, et al. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int j Cancer. 2020;146(7):1937–1949. doi:10.1002/ijc.3260931376289
  • UchiharaT, MiyakeK, YonemuraA, et al. Extracellular vesicles from cancer-associated fibroblasts containing Annexin A6 induces FAK-YAP activation by stabilizing β1 integrin, enhancing drug resistance. Cancer Res. 2020;80(16):3222–3235. doi:10.1158/0008-5472.CAN-19-380332605995
  • KangW, TongJHM, ChanAWH, et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res. 2011;17(8):2130. doi:10.1158/1078-0432.CCR-10-246721346147
  • ZhangJ, XuZP, YangYC, ZhuJS, ZhouZ, ChenWX. Expression and Yes-associated protein in gastric adenocarcinoma and inhibitory effects of its knockdown on gastric cancer cell proliferation and metastasis. Int J Immunopathol Pharmacol. 2012;25(3):583–590. doi:10.1177/03946320120250030423058008
  • QiaoY, LinSJ, ChenY, et al. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene. 2016;35(20):2664–2674. doi:10.1038/onc.2015.33826364597
  • DaCL, XinY, ZhaoJ, LuoXD. Significance and relationship between Yes-associated protein and survivin expression in gastric carcinoma and precancerous lesions. World j Gastroenterol. 2009;15(32):4055–4061. doi:10.3748/wjg.15.405519705503
  • ZhouZ, ZhuJ-S, XuZ-P. RNA interference mediated YAP gene silencing inhibits invasion and metastasis of human gastric cancer cell line SGC-7901. Hepatogastroenterology. 2011;58(112):2156–2161. doi:10.5754/hge1123422024089
  • ZhouZ, ZhuJ-S, GaoC-P, et al. siRNA targeting YAP gene inhibits gastric carcinoma growth and tumor metastasis in SCID mice. Oncol Lett. 2016;11(4):2806–2814. doi:10.3892/ol.2016.431927073556
  • PobbatiAV, HongW. Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 2013;14(5):390–398. doi:10.4161/cbt.2378823380592
  • DiepenbruckM, WaldmeierL, IvanekR, et al. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci. 2014;127(Pt 7):1523–1536. doi:10.1242/jcs.13986524554433
  • Liu-ChittendenY, HuangB, ShimJS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–1305. doi:10.1101/gad.192856.11222677547
  • BrodowskaK, Al-MoujahedA, MarmalidouA, et al. The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. Exp Eye Res. 2014;124:67–73. doi:10.1016/j.exer.2014.04.01124837142
  • GiraudJ, Molina-CastroS, SeeneevassenL, et al. Verteporfin targeting YAP1/TAZ-TEAD transcriptional activity inhibits the tumorigenic properties of gastric cancer stem cells. Int j Cancer. 2020;146(8):2255–2267. doi:10.1002/ijc.3266731489619
  • HsuPC, YouB, YangYL, et al. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget. 2016;7(32):51922–51933. doi:10.18632/oncotarget.1045827409162
  • WangC, ZhuX, FengW, et al. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am J Cancer Res. 2016;6(1):27–37.27073720
  • Chen-H-H, MullettSJ, StewartAFR. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem. 2004;279(29):30800–30806. doi:10.1074/jbc.M40015420015140898
  • GüntherS, MielcarekM, KrügerM, BraunT. VITO-1 is an essential cofactor of TEF1-dependent muscle-specific gene regulation. Nucleic Acids Res. 2004;32(2):791–802. doi:10.1093/nar/gkh24814762206
  • MaedaT, ChapmanDL, StewartAFR. Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. J Biol Chem. 2002;277(50):48889–48898. doi:10.1074/jbc.M20685820012376544
  • VaudinP, DelanoueR, DavidsonI, SilberJ, ZiderA. TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development. 1999;126(21):4807–4816. doi:10.1242/dev.126.21.480710518497
  • PobbatiAV, ChanSW, LeeI, SongH, HongW. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure. 2012;20(7):1135–1140. doi:10.1016/j.str.2012.04.00422632831
  • ZhangW, GaoY, LiP, et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 2014;24(3):331–343. doi:10.1038/cr.2014.1024458094
  • JiaoS, WangH, ShiZ, et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 2014;25(2):166–180. doi:10.1016/j.ccr.2014.01.01024525233
  • YaoY, WangY, LiL, et al. Down-regulation of interferon regulatory factor 2 binding protein 2 suppresses gastric cancer progression by negatively regulating connective tissue growth factor. J Cell Mol Med. 2019;23(12):8076–8089. doi:10.1111/jcmm.1467731559693
  • WuA, WuQ, DengY, et al. Loss of VGLL4 suppresses tumor PD-L1 expression and immune evasion. EMBO J. 2019;38:1. doi:10.15252/embj.201899506
  • SongS, XieM, ScottAW, et al. A novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol Cancer Ther. 2018;17(2):443–454. doi:10.1158/1535-7163.MCT-17-056029167315
  • HoldenJK, CunninghamCN. Targeting the Hippo pathway and cancer through the TEAD family of transcription factors. Cancers. 2018;10:3. doi:10.3390/cancers10030081
  • SmithSA, SessionsRB, ShoemarkDK, et al. Antiproliferative and antimigratory effects of a novel YAP-TEAD interaction inhibitor identified using in silico molecular docking. J Med Chem. 2019;62(3):1291–1305. doi:10.1021/acs.jmedchem.8b0140230640473
  • PobbatiAV, HanX, HungAW, et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure. 2015;23(11):2076–2086. doi:10.1016/j.str.2015.09.00926592798
  • Bum-ErdeneK, ZhouD, Gonzalez-GutierrezG, et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEAD. Yap protein-protein interaction. Cell Chem Biol. 2019;26:3. doi:10.1016/j.chembiol.2018.11.01030658110
  • WuX; Inventor; The General Hospital Corporation, assignee. TEAD transcription factor autopalmitoylation inhibitors. US patent US10696642B22017. Available from: https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20180215721.PGNR.
  • ZbiegJR, BerozaPP, CrawfordJJ; Inventors; Genentech, Inc. Hoffmann-La Roche Ag, assignee. Therapeutic compounds. US patent WO2019232216A12019. Available from: http://globaldossier.uspto.gov/#/result/publication/WO/2019232216/1.
  • BarthM, ContalS, MontalbettiC, SpitzerL; Inventors; Inventiva, Inc., assignee. New compounds inhibitors of the yap/taz-tead interaction and their use in the treatment of malignant mesothelioma. US patent WO2017064277A12017. Available from: https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20180297964.PGNR.
  • LimHJ, ParkSJ, LeeCH, et al.; Inventors; Korea Research Institute of Chemical Technology, Yonsei University, assignee. Compound inhibiting YAP-TEAD interaction and pharmaceutical composition for treating or preventing cancer comprising the same as an active ingredient. US patent KR20200054096A2020. Available from: https://worldwide.espacenet.com/patent/search/family/070913463/publication/KR20200054096A?q=pn%3DKR20200054096A.
  • BarthM, ContalS, JunienJ-L, MassardierC, MontalbettiC, SoudeA; Inventors; Inventiva SA, assignee. Inhibitors of the YAP/TAZ-TEAD interaction and their use in the treatment of cancer. US patent EP3632908A12018. Available from: https://worldwide.espacenet.com/patent/search/family/063857833/publication/EP3632908A1?q=pn%3DEP3632908A1.
  • ZhangZ, LinZ, ZhouZ, et al. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction. ACS Med Chem Lett. 2014;5(9):993–998. doi:10.1021/ml500160m25221655
  • TanN, ZhaoB, ZhaoS, JiX, ZengG, LiJ, Inventors; Kunming Xieli Intellectual Property Agency, assignee. Rubiaceae type cyclic peptide preparation method and be used as Hippo-YAP signal pathway inhibitor. US patent CN104193808B2014. Available from: https://worldwide.espacenet.com/patent/search/family/052079204/publication/CN104193808A?q=pn%3DCN104193808B.
  • Rebollo GarciaA, NematiF, DecaudinD, Inventors; Universite Pierre et Marie Curie (Paris 6), Institut Curie, assignee. Peptide inhibitors of TEAD/YAP-TAZ interaction. US patent US20160264636A12016. Available from: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20160264636.PGNR.
  • HuangZ; Inventor; Xu and Partners LLC, assignee. YAP protein inhibiting polypeptides as well as application thereof. US patent CN104558119A2015. Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN104558119A.
  • LiK; Inventor; Xu and Partners LLC, assignee. High-activity tumor inhibitor and its preparation method and use. US patent CN105524139A2015. Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN105524139A.
  • HuT, LinZ, LingC, et al.; Inventors; F. Hoffmann-La Roche Ag, Hoffmann-La Roche Inc., assignee. YAP-TEAD inhibitors. US patent WO2015022283A12015. Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DWO2015022283A1.
  • TroiloA, BensonEK, EspositoD, et al. Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget. 2016;7(20):28765–28782. doi:10.18632/oncotarget.911727144834
  • WangW, LiN, LiX, TranMK, HanX, ChenJ. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 2015;13(3):524–532. doi:10.1016/j.celrep.2015.09.01426456820
  • WangH, LuB, CastilloJ, et al. Tankyrase inhibitor sensitizes lung cancer cells to Endothelial Growth Factor Receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J Biol Chem. 2016;291(29):15256–15266. doi:10.1074/jbc.M116.72296727231341
  • WaalerJ, MyglandL, TveitaA, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3(1):196. doi:10.1038/s42003-020-0916-232332858
  • WangQ, LuP, WangT, et al. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med. 2020;9(11):3816–3828. doi:10.1002/cam4.302432227453
  • DeRanM, YangJ, ShenC-H, et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 2014;9(2):495–503. doi:10.1016/j.celrep.2014.09.03625373897
  • MoJS, MengZ, KimYC, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol. 2015;17(4):500–510. doi:10.1038/ncb311125751140
  • WangW, XiaoZD, LiX, et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 2015;17(4):490–499. doi:10.1038/ncb311325751139
  • ChiuHF, HoSC, ChangCC, WuTN, YangCY. Statins are associated with a reduced risk of gastric cancer: a population-based case-control study. Am J Gastroenterol. 2011;106(12):2098–2103. doi:10.1038/ajg.2011.27721844922
  • SinghPP, SinghS. Statins are associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Ann Oncol. 2013;24(7):1721–1730. doi:10.1093/annonc/mdt15023599253
  • SorrentinoG, RuggeriN, SpecchiaV, et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16(4):357–366. doi:10.1038/ncb293624658687
  • LiuQ, XiaH, ZhouS, et al. Simvastatin inhibits the malignant behaviors of gastric cancer cells by simultaneously suppressing YAP and β-Catenin signaling. Onco Targets Ther. 2020;13:2057–2066. doi:10.2147/OTT.S23769332210573
  • WangZ, WuY, WangH, et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci USA. 2014;111(1):E89–E98. doi:10.1073/pnas.131919011024367099
  • MoJ-S, YuF-X, GongR, BrownJH, GuanK-L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 2012;26(19):2138–2143. doi:10.1101/gad.197582.11222972936
  • ZhaoD, WuJ, ZhaoY, et al. Zoledronic acid inhibits TSC2-null cell tumor growth via RhoA/YAP signaling pathway in mouse models of lymphangioleiomyomatosis. Cancer Cell Int. 2020;20:46. doi:10.1186/s12935-020-1131-432063747
  • MiW, LinQ, ChildressC, et al. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene. 2015;34(24):3095–3106. doi:10.1038/onc.2014.25125109332
  • TangY, FangG, GuoF, et al. Selective inhibition of STRN3-containing PP2A phosphatase restores hippo tumor-suppressor activity in gastric cancer. Cancer Cell. 2020;38(1). doi:10.1016/j.ccell.2020.05.019
  • ZhengY, PanD. The Hippo signaling pathway in development and disease. Dev Cell. 2019;50(3):264–282.31386861
  • RosenbluhJ, NijhawanD, CoxAG, et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151(7):1457–1473. doi:10.1016/j.cell.2012.11.02623245941
  • TaccioliC, SorrentinoG, ZanniniA, et al. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget. 2015;6(36):38854–38865. doi:10.18632/oncotarget.574926513174
  • MaH, WangJ, ZhaoX, et al. Periostin promotes colorectal tumorigenesis through Integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep. 2020;30(3):793–806.e796. doi:10.1016/j.celrep.2019.12.07531968254
  • TaniguchiK, WuL-W, GrivennikovSI, et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature. 2015;519(7541):57–62. doi:10.1038/nature1422825731159
  • HuJK-H, DuW, SheltonSJ, OldhamMC, DiPersioCM, KleinOD. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell. 2017;21(1):91–106.e6. doi:10.1016/j.stem.2017.03.02328457749
  • YaoLW, WuLL, ZhangLH, et al. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis. 2020;9(2):17. doi:10.1038/s41389-020-0198-z32054827
  • YeoMS, SubhashVV, SudaK, et al. FBXW5 promotes tumorigenesis and metastasis in gastric cancer via activation of the FAK-Src signaling pathway. Cancers. 2019;11:6. doi:10.3390/cancers11060836
  • ZhangH, SchaeferA, WangY, et al. Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer. Cancer Discov. 2020;10(2):288–305. doi:10.1158/2159-8290.CD-19-081131771969
  • TanF, HuangY, PeiQ, LiuH, PeiH, ZhuH. Matrix stiffness mediates stemness characteristics via activating the Yes-associated protein in colorectal cancer cells. J Cell Biochem. 2018. doi:10.1002/jcb.27532
  • ZhaoB, LiL, WangL, WangC-Y, YuJ, GuanK-L. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26(1):54–68. doi:10.1101/gad.173435.11122215811
  • LinL, SabnisAJ, ChanE, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47(3):250–256. doi:10.1038/ng.321825665005
  • GhisoE, MiglioreC, CicirielloV, et al. YAP-dependent AXL overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia. 2017;19(12):1012–1021. doi:10.1016/j.neo.2017.10.00329136529
  • ZhaoX, WangX, FangL, et al. A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer. Cancer Lett. 2017;402:61–70. doi:10.1016/j.canlet.2017.05.01528576749
  • SongS, HonjoS, JinJ, et al. The Hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin Cancer Res. 2015;21(11):2580–2590. doi:10.1158/1078-0432.CCR-14-219125739674
  • GujralTS, KirschnerMW. Hippo pathway mediates resistance to cytotoxic drugs. Proc Natl Acad Sci USA. 2017;114(18):E3729–E3738. doi:10.1073/pnas.170309611428416665
  • LuT, SunL, ZhuX. Yes-associated protein enhances proliferation and attenuates sensitivity to cisplatin in human gastric cancer cells. Biomed Pharmacother. 2018;105:1269–1275. doi:10.1016/j.biopha.2018.06.03130021363
  • LuT, SunL, ZhuX. Yes-associated protein enhances proliferation and attenuates sensitivity to cisplatin in human gastric cancer cells. Biomed Pharmacother. 2018;105:1269–1275.30021363
  • LinC-H, PelissierFA, ZhangH, et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Mol Biol Cell. 2015;26(22):3946–3953. doi:10.1091/mbc.E15-07-045626337386
  • SongJ, XieL-X, ZhangX-Y, et al. Role of YAP in lung cancer resistance to cisplatin. Oncol Lett. 2018;16(3):3949–3954. doi:10.3892/ol.2018.914130128013
  • LeeW-Y, ChenP-C, WuW-S, et al. Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int j Cancer. 2017;141(9):1921–1931. doi:10.1002/ijc.3088828710768
  • LiuB-S, XiaH-W, ZhouS, et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells. Oncol Rep. 2018;40(4):2171–2182. doi:10.3892/or.2018.663030106444
  • OkuY, NishiyaN, ShitoT, et al. Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio. 2015;5(1):542–549. doi:10.1016/j.fob.2015.06.007
  • Liu-ChittendenY, HuangB, ShimJS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–1305.22677547
  • DasariVR, MazackV, FengW, NashJ, CareyDJ, GogoiR. Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget. 2017;8(17):28628–28640. doi:10.18632/oncotarget.1561428404908
  • MatusewiczL, MeissnerJ, ToporkiewiczM, SikorskiAF. The effect of statins on cancer cells–review. Tumour Biol. 2015;36(7):4889–4904. doi:10.1007/s13277-015-3551-726002574
  • ChenL, ChanSW, ZhangX, et al. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev. 2010;24(3):290–300. doi:10.1101/gad.186531020123908
  • LiZ, ZhaoB, WangP, et al. Structural insights into the YAP and TEAD complex. Genes Dev. 2010;24(3):235–240. doi:10.1101/gad.186581020123905
  • Janse van RensburgHJ, AzadT, LingM, et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 2018;78(6):1457–1470. doi:10.1158/0008-5472.CAN-17-313929339539
  • HsuP-C, MiaoJ, WangY-C, et al. Inhibition of yes-associated protein down-regulates PD-L1 (CD274) expression in human malignant pleural mesothelioma. J Cell Mol Med. 2018;22(6):3139–3148. doi:10.1111/jcmm.1359329575535
  • KimMH, KimCG, KimS-K, et al. YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res. 2018;6(3):255–266. doi:10.1158/2326-6066.CIR-17-032029382670
  • LeeBS, ParkDI, LeeDH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;491(2):493–499. doi:10.1016/j.bbrc.2017.07.00728684311