272
Views
9
CrossRef citations to date
0
Altmetric
Original Research

In vivo and in vitro Evaluation of in situ Gel Formulation of Pemirolast Potassium in Allergic Conjunctivitis

&
Pages 2099-2107 | Published online: 18 May 2021

References

  • AlfonsoSA, FawleyJD, LuXA. Conjunctivitis. Prim Care. 2015;42(3):325–345. doi:10.1016/j.pop.2015.05.00126319341
  • DinowitzM, RescignoR, BieloryL. Ocular allergic diseases: differential diagnosis, examination techniques, and testing. Clin Allergy Immunol. 2000;15:127–150.10943291
  • BalyeatRM, BowenR. Allergic conjunctivitis. South Med J. 1935;28(11):1005–1011. doi:10.1097/00007611-193511000-00009
  • GousP, RopoA. A comparative trial of the safety and efficacy of 0.1 percent pemirolast potassium ophthalmic solution dosed twice or four times a day in patients with seasonal allergic conjunctivitis. J Ocul Pharmacol Ther. 2004;20(2):139–150. doi:10.1089/10807680477371081215117570
  • ShulmanDG. Two mast cell stabilizers, pemirolast potassium 0.1% and nedocromil sodium 2%, in the treatment of seasonal allergic conjunctivitis: a comparative study. Adv Ther. 2003;20(1):31–40. doi:10.1007/BF0285011712772816
  • AbelsonMB, BerdyGJ, MundorfT, AmdahlLD, GravesAL. Pemirolast potassium 0.1% ophthalmic solution is an effective treatment for allergic conjunctivitis: a pooled analysis of two prospective, randomized, double-masked, placebo-controlled, Phase III Studies. J Ocul Pharmacol Ther. 2002;18(5):475–488. doi:10.1089/1080768026036275912419098
  • KawashimaT, IwamotoI, NakagawaN, TomiokaH, YoshidaS. Inhibitory effect of pemirolast, a novel antiallergic drug, on leukotriene C4 and granule protein release from human eosinophils. Int Arch Allergy Immunol. 1994;103(4):405–409. doi:10.1159/0002366628130655
  • FujimiyaH, NakashimaS, MiyataH, NozawaY. Effect of a novel antiallergic drug, pemirolast, on activation of rat peritoneal mast cells: inhibition of exocytotic response and membrane phospholipid turnover. Int Arch Allergy Immunol. 1991;96(1):62–67. doi:10.1159/000235536
  • MinamiK, HossenMA, KameiC. Increasing effect by simultaneous use of levocabastine and pemirolast on experimental allergic conjunctivitis in rats. Biol Pharm Bull. 2005;28(3):473–476. doi:10.1248/bpb.28.47315744071
  • Üstündağ OkurN, EşÇ, SiafakaPI, et al. Novel ocular drug delivery systems: an update on microemulsions. J Ocul Pharmacol Ther. 2020;36(6):342–354. doi:10.1089/jop.2019.013532255728
  • AgrawalAK, DasM, JainS. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9(4):383–402. doi:10.1517/17425247.2012.66536722432690
  • BrombergL. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev. 1998;31(3):197–221. doi:10.1016/S0169-409X(97)00121-X10837626
  • GilES, HudsonSM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–1222. doi:10.1016/j.progpolymsci.2004.08.003
  • KangKS, VeederGT, MirrasoulPJ, KanekoT, CottrellIW. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol. 1982;43(5):1086–1091. doi:10.1128/AEM.43.5.1086-1091.198216346007
  • KorgelBA, RotemA, MonbouquetteHG. Effective diffusivity of galactose in calcium alginate gels containing immobilized zymomonas mobilis. Biotechnol Prog. 1992;8(2):111–117. doi:10.1021/bp00014a0041368005
  • StellwagenJ, StellwagenNC. The effect of gel structure on matrix orientation. Electrophoresis. 1992;13(9–10):595–600. doi:10.1002/elps.115013011201459072
  • Palumbo FS, Federico S, Pitarresi G, et al. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym. 2020;229:115430
  • GrasdalenH, SmidsroedO. Gelation of gellan gum. Carbohydr Polym. 1987;7:371–393. doi:10.1016/0144-8617(87)90004-X
  • ChanrasekaranR, PuigjanerLC, JoyceKL, ArnottS. Cation interaction in gellan: an X-ray study of the potassium salt. Carbohydr Res. 1988;181:23–40. doi:10.1016/0008-6215(88)84020-5
  • ChanrasekaranR, ThailambalVG. The influence of calcium ions, acetate and l-glycerate groups on the gellan double helix. Carbohydr Polym. 1990;12:431–432. doi:10.1016/0144-8617(90)90092-7
  • ChowhanA, GiriTK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol. 2020;150:559–572. doi:10.1016/j.ijbiomac.2020.02.09732057864
  • JangaKY, TatkeA, DudhipalaN, et al. Gellan gum based sol-to-gel transforming system of natamycin transfersomes improves topical ocular delivery. J Pharmacol Exp Ther. 2019;370(3):814–822. doi:10.1124/jpet.119.25644630872389
  • ThrimawithanaTR, YoungSA, BuntCR, GreenCR, AlanyRG. In-vitro and in-vivo evaluation of carrageenan/methylcellulose polymeric systems for transscleral delivery of macromolecules. Eur J Pharm Sci. 2011;44:399–409. doi:10.1016/j.ejps.2011.08.02621907798
  • PaulssonM, HägerströmH, EdsmanK. Rheological studies of the gelation of deacetylated gellan gum (Gelrite) in physiological conditions. Eur J Pharm Sci. 1999;9(1):99–105. doi:10.1016/S0928-0987(99)00051-210494003
  • SrividyaB, CardozaRM, AminPD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Contr Rel. 2001;73:205–211. doi:10.1016/S0168-3659(01)00279-6
  • CaoSL, RenXW, ZhangQZ, et al. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int J Pharm. 2009;365(1–2):109–115. doi:10.1016/j.ijpharm.2008.08.04218822361
  • ManjappaAS, NanjwadeBK, ManviFV, MurthyRSR. Sustained ophthalmic in situ gel of ketorolac tromethamine: rheology and in vivo studies. Drug Dev Res. 2009;70:417–424. doi:10.1002/ddr.20317
  • DraizeJH, WoodardG, CalveryHO. Methods for the study of irritation and toxicity of substances. J Pharmacol Exp Ther. 1944;82:377–390.
  • LinHR, SungKC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Contr Rel. 2000;69(3):379–388. doi:10.1016/S0168-3659(00)00329-1
  • BuketN, AksuV, YozgatlıME. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J Drug Deliv Sci Tech. 2019.
  • KuoCH, CollinsAM, BoettnerDR, YangTF, OnoSJ. Role of CCL7 in type I hypersensitivity reactions in murine experimental allergic conjunctivitis. J Immunol. 2017;198(2):645–656. doi:10.4049/jimmunol.150241627956527
  • SunW, ShengY, ChenJ, DongX, YangshunG. Down-regulation of miR-146a expression induces allergic conjunctivitis in mice by increasing TSLP level. Med Sci Monit. 2015;21:2000–2007. doi:10.12659/MSM.89456326166175
  • YasueM, NakamuraS, YokotaT, OkudairaH, OkumuraY. Experimental monkey model sensitized with mite antigen. Int Arch Allergy Immunol. 1998;115(4):303–311. doi:10.1159/0000694619566353
  • ÜstündagokurN, YozgatliV, OkurME, et al. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 2019;49:323–333. doi:10.1016/j.jddst.2018.12.005
  • OkurNÜ, YozgatliV, OkurME. In vitro-in vivo evaluation of tetrahydrozoline-loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev Res. 2020;81(6):716–727. doi:10.1002/ddr.2167732359095
  • MakwanaSB, PatelVA, ParmarSJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results in Pharma Sci. 2015.