1,009
Views
41
CrossRef citations to date
0
Altmetric
Review

Clinical Application of Cytokines in Cancer Immunotherapy

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2269-2287 | Published online: 27 May 2021

References

  • SondkaZ, BamfordS, ColeCG, et al. The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705. doi:10.1038/s41568-018-0060-130293088
  • VineisP, WildCP. Global cancer patterns: causes and prevention. Lancet. 2014;383(9916):549–557. doi:10.1016/s0140-6736(13)62224-224351322
  • BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • FerrisRL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):3293–3304. doi:10.1200/jco.2015.61.150926351330
  • HaddadR, WirthL, PosnerM. Emerging drugs for head and neck cancer. Expert Opin Emerg Drugs. 2006;11(3):461–467. doi:10.1517/14728214.11.3.46116939385
  • ChenDS, MellmanI. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.01223890059
  • TsukamotoH, FujiedaK, SenjuS, et al. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Science. 2018;109(3):523–530. doi:10.1111/cas.1343329090850
  • FisherDT, AppenheimerMM, EvansSS. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 2014;26(1):38–47. doi:10.1016/j.smim.2014.01.00824602448
  • WrzesinskiSH, WanYY, FlavellRA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18):5262–5270. doi:10.1158/1078-0432.Ccr-07-115717875754
  • GeissmannF, RevyP, RegnaultA, et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol. 1999;162(8):4567–4575.10201996
  • ChenC, GaoF-H. Th17 cells paradoxical roles in melanoma and potential application in immunotherapy. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00187
  • MocellinS, MarincolaFM, YoungHA. Interleukin-10 and the immune response against cancer: a counterpoint. J Leukocyte Biol. 2005;78(5):1043–1051. doi:10.1189/jlb.070535816204623
  • SeoN, HayakawaS, TakigawaM, TokuraY. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunology. 2001;103(4):449–457. doi:10.1046/j.1365-2567.2001.01279.x11529935
  • XuDH, ZhuZ, WakefieldMR, et al. The role of IL-11 in immunity and cancer. Cancer Lett. 2016;373(2):156–163. doi:10.1016/j.canlet.2016.01.00426826523
  • LiZ, ChenL, QinZ. Paradoxical roles of IL-4 in tumor immunity. Cell Mol Immunol. 2009;6(6):415–422. doi:10.1038/cmi.2009.5320003817
  • TerabeM, MatsuiS, Noben-TrauthN, et al. NKT cell–mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nat Immunol. 2000;1(6):515–520. doi:10.1038/8277111101874
  • TerabeM, ParkJM, BerzofskyJA. Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother. 2004;53(2):79–85. doi:10.1007/s00262-003-0445-014610620
  • TuguesS, BurkhardSH, OhsI, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2014;22(2):237–246. doi:10.1038/cdd.2014.13425190142
  • MicallefMJ, TanimotoT, KohnoK, IkedaM, KurimotoM. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 1997;57(20):4557–4563.9377569
  • KimJ, KimC, KimTS, et al. IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun. 2006;344(4):1284–1289. doi:10.1016/j.bbrc.2006.04.01616650813
  • KimKE, SongH, KimTS, et al. Interleukin-18 is a critical factor for vascular endothelial growth factor-enhanced migration in human gastric cancer cell lines. Oncogene. 2006;26(10):1468–1476. doi:10.1038/sj.onc.120992617001321
  • MantovaniA, BarajonI, GarlandaC. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281(1):57–61. doi:10.1111/imr.1261429247996
  • CastroF, CardosoAP, GonçalvesRM, SerreK, OliveiraMJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9:847. doi:10.3389/fimmu.2018.0084729780381
  • TamuraR, TanakaT, AkasakiY, et al. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol. 2019;37(1):2. doi:10.1007/s12032-019-1329-231713115
  • AguiarRBD, MoraesJZD. Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors. Front Immunol. 2019;10:1023. doi:10.3389/fimmu.2019.0102331156623
  • YangJ, YanJ, LiuB. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 2018;9:978. doi:10.3389/fimmu.2018.0097829774034
  • BalkwillF. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–371. doi:10.1038/nrc262819343034
  • HerzbergB, FisherDE. Metastatic melanoma and immunotherapy. Clin Immunol. 2016;172:105–110. doi:10.1016/j.clim.2016.07.00627430520
  • ImA, PavleticSZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi:10.1186/s13045-017-0453-828434396
  • FyfeG, FisherRI, RosenbergSA, et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–696. doi:10.1200/jco.1995.13.3.6887884429
  • McDermottDF, ChengS-C, SignorettiS, et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(3):561–568. doi:10.1158/1078-0432.Ccr-14-152025424850
  • NealZC, YangJC, RakhmilevichAL, et al. Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin Cancer Res. 2004;10(14):4839–4847. doi:10.1158/1078-0432.Ccr-03-079915269160
  • AlbertiniMR, YangRK, RanheimEA, et al. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol Immunother. 2018;67(10):1647–1658. doi:10.1007/s00262-018-2223-z30073390
  • CooleyS, HeF, BachanovaV, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970–1980. doi:10.1182/bloodadvances.201802833231266741
  • BelardelliF, FerrantiniM, ProiettiE, KirkwoodJM. Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13(2):119–134. doi:10.1016/s1359-6101(01)00022-311900988
  • BordenEC. Interferons alpha and beta in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18(3):219–234. doi:10.1038/s41573-018-0011-230679806
  • SzenajchJ, WcisloG, JeongJY, SzczylikC, FeldmanL. The role of erythropoietin and its receptor in growth, survival and therapeutic response of human tumor cells from clinic to bench - a critical review. Biochim Biophys Acta. 2010;1806(1):82–95. doi:10.1016/j.bbcan.2010.04.00220406667
  • DinarelloCA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8–27. doi:10.1111/imr.1262129247995
  • LewisAM, VargheseS, XuH, AlexanderHR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4(1):48. doi:10.1186/1479-5876-4-4817096856
  • ForsterR, Davalos-MisslitzAC, RotA. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–371. doi:10.1038/nri229718379575
  • SharmaS, StolinaM, LuoJ, et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol. 2000;164(9):4558–4563. doi:10.4049/jimmunol.164.9.455810779757
  • GrayJE, ChiapporiA, WilliamsCC, et al. A phase I/randomized phase II study of GM.CD40L vaccine in combination with CCL21 in patients with advanced lung adenocarcinoma. Cancer Immunol Immunother. 2018;67(12):1853–1862. doi:10.1007/s00262-018-2236-730209589
  • NagarshethN, WichaMS, ZouW. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–572. doi:10.1038/nri.2017.4928555670
  • DerynckR, AkhurstRJ, BalmainA. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–129. doi:10.1038/ng1001-11711586292
  • ViallardC, LarrivéeB. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–426. doi:10.1007/s10456-017-9562-928660302
  • MendelsohnJ, BaselgaJ. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–6565. doi:10.1038/sj.onc.120408211426640
  • DenduluriSK, IdowuO, WangZ, et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015;2(1):13–25. doi:10.1016/j.gendis.2014.10.00425984556
  • KatohM, NakagamaH. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300. doi:10.1002/med.2128823696246
  • JoshiBH, LelandP, AsherA, et al. In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res. 2001;61(22):8058–8061.11719427
  • JoshiBH, LelandP, PuriRK. Identification and characterization of interleukin-13 receptor in human medulloblastoma and targeting these receptors with interleukin-13-pseudomonas exotoxin fusion protein. Croat Med J. 2003;44(4):455–462.12950150
  • MilesSA, TestaM, HuangJ, WadeM, CardenJ, ScaddenDT. Lack of antitumor activity and intolerance of interleukin-4 in patients with advanced HIV disease and Kaposi’s sarcoma. J Interferon Cytokine Res. 2002;22(11):1143–1148. doi:10.1089/1079990026044257512513914
  • KhajehH, BahariA, LagzianM, SabbaghSK. Functional and key gene expression analyses of chicken monocyte-derived dendritic cells with recombinant interleukin 4. Iran J Allergy Asthma Immunol. 2016;15(6):508–514.28129683
  • ManninoMH, ZhuZ, XiaoH, et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015;367(2):103–107. doi:10.1016/j.canlet.2015.07.00926188281
  • GrivennikovSI. IL-11: a prominent pro-tumorigenic member of the IL-6 family. Cancer Cell. 2013;24(2):145–147. doi:10.1016/j.ccr.2013.07.01823948295
  • WangL, YiT, KortylewskiM, et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457–1464. doi:10.1084/jem.2009020719564351
  • BaldoBA. Side effects of cytokines approved for therapy. Drug Saf. 2014;37:921–943. doi:10.1007/s40264-014-0226-z25270293
  • LiYL, ZhuL, LiuZ, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed Engl. 2009;48(52):9914–9918. doi:10.1002/anie.20090426019937876
  • SánchezA, TobíoM, GonzálezL, FabraA, AlonsoMJ. Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur J Pharm Sci. 2003;18(3–4):221–229. doi:10.1016/s0928-0987(03)00019-812659933
  • ZhaiY-Z, ZhouY, MaL, FengG-H. Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/GM-CSF nano-DNA vaccine in BAlb/c mice. Bing Du Xue Bao. 2014;30(4):423–428.25272598
  • ParkJ, WrzesinskiSH, SternE, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905. doi:10.1038/nmat335522797827
  • Ten HagenTL, SeynhaeveAL, van TielST, RuiterDJ, EggermontAM. Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int J Cancer. 2002;97(1):115–120. doi:10.1002/ijc.157811774252
  • ShaoJ, GriffinRJ, GalanzhaEI, et al. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep. 2013;3(1):1293. doi:10.1038/srep0129323443065
  • YeH, TongJ, WuJ, et al. Preclinical evaluation of recombinant human IFNα2b-containing magnetoliposomes for treating hepatocellular carcinoma. Int J Nanomedicine. 2014;9:4533–4550. doi:10.2147/IJN.S6722825288882
  • YanC, JieL, YongqiW, et al. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. Biochem Biophys Res Commun. 2015;463(3):336–343. doi:10.1016/j.bbrc.2015.05.06526022121
  • TanL, HanS, DingS, et al. Chitosan nanoparticle-based delivery of fused NKG2D-IL-21 gene suppresses colon cancer growth in mice. Int J Nanomedicine. 2017;12:3095–3107. doi:10.2147/IJN.S12803228450784
  • NieY, ZhangZ-R, HeB, GuZ. Investigation of PEG-PLGA-PEG nanoparticles-based multipolyplexes for IL-18 gene delivery. J Biomater Appl. 2012;26(8):893–916. doi:10.1177/088532821038488921273262
  • HanL, ZhangA, WangH, et al. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther. 2010;21(4):417–426. doi:10.1089/hum.2009.08719899955
  • PolJG, WorkenheST, KondaP, GujarS, KroemerG. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 2020;56:4–27. doi:10.1016/j.cytogfr.2020.10.00733183957
  • CantarelliC, AngelettiA, CravediP. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant. 2019;19(9):2407–2414. doi:10.1111/ajt.1536930903735
  • WheelockEF. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science. 1965;149(3681):310–311. doi:10.1126/science.149.3681.310
  • IsaacsA, LindenmannJ. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147:258–267. doi:10.1098/rspb.1957.004813465720
  • CohenS. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237(5):1555–1562. doi:10.1016/S0021-9258(19)83739-013880319
  • BradleyTR, MetcalfD. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44(3):287–299. doi:10.1038/icb.1966.284164182
  • IchikawaY, PluznikDH, SachsL. In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1966;56(2):488–495. doi:10.1073/pnas.56.2.4885229970
  • RinderknechtE, HumbelRE. Amino-terminal sequences of two polypeptides from human serum with nonsuppressible insulin-like and cell-growth-promoting activities: evidence for structural homology with insulin B chain. Proc Natl Acad Sci U S A. 1976;73(12):4379–4381. doi:10.1073/pnas.73.12.43791069990
  • GeryI, GershonRK, WaksmanBH. Potentiation of cultured mouse thymocyte responses by factors released by peripheral leucocytes. J Immunol. 1971;107(6):1778–1780.4941117
  • MorganD, RuscettiF, GalloR. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–1008. doi:10.1126/science.181845181845
  • ArmelinHA. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A. 1973;70(9):2702–2706. doi:10.1073/pnas.70.9.27024354860
  • CarswellEA, OldLJ, KasselRL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci. 1975;72(9):3666–3670. doi:10.1073/pnas.72.9.36661103152
  • BurgessAW, CamakarisJ, MetcalfD. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem. 1977;252(6):1998–2003. doi:10.1016/S0021-9258(18)71855-3300377
  • de LarcoJE, TodaroGJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978;75(8):4001–4005. doi:10.1073/pnas.75.8.4001211512
  • IhleJN, PepersackL, RebarL. Regulation of T cell differentiation: in vitro induction of 20 alpha-hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immunol. 1981;126(6):2184–2189.6971890
  • HowardM, FarrarJ, HilfikerM, et al. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med. 1982;155(3):914–923. doi:10.1084/jem.155.3.9146977612
  • HiranoT, YasukawaK, HaradaH, et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324(6092):73–76. doi:10.1038/324073a03491322
  • NamenAE, LuptonS, HjerrildK, et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988;333(6173):571–573. doi:10.1038/333571a03259677
  • MosmannTR, CoffmanRL. Two types of mouse helper T-cell clone Implications for immune regulation. Immunol Today. 1987;8:223–227. doi:10.1016/0167-5699(87)90171-X25290434
  • KobayashiM, FitzL, RyanM, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170(3):827–845. doi:10.1084/jem.170.3.8272504877
  • CherwinskiHM, SchumacherJH, BrownKD, MosmannTR. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166(5):1229–1244. doi:10.1084/jem.166.5.12292960769
  • SengerDR, GalliS, DvorakA, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–985. doi:10.1126/science.68235626823562
  • PaulSR, BennettF, CalvettiJA, et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci U S A. 1990;87(19):7512–7516. doi:10.1073/pnas.87.19.75122145578
  • GrabsteinK, EisenmanJ, ShanebeckK, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–968. doi:10.1126/science.81781558178155
  • RouvierE, LucianiMF, MatteiMG, DenizotF, GolsteinP. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993;150(12):5445–5456.8390535
  • OkamuraH, TsutsuiH, KomatsuT, et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature. 1995;378(6552):88–91. doi:10.1038/378088a07477296
  • Parrish-NovakJ, DillonSR, NelsonA, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408(6808):57–63. doi:10.1038/3504050411081504
  • OzakiK, KiklyK, MichalovichD, YoungPR, LeonardWJ. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci. 2000;97(21):11439–11444. doi:10.1073/pnas.20036099711016959
  • HedrickJA, ZlotnikA. Identification and characterization of a novel beta chemokine containing six conserved cysteines. J Immunol. 1997;159(4):1589–1593.9257816
  • NagiraM, ImaiT, HieshimaK, et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem. 1997;272(31):19518–19524. doi:10.1074/jbc.272.31.195189235955
  • GruenbacherG, GanderH, NussbaumerO, et al. IL-2 costimulation enables statin-mediated activation of human NK cells, preferentially through a mechanism involving CD56 + dendritic cells. Cancer Res. 2010;70(23):9611–9620. doi:10.1158/0008-5472.Can-10-196820947520
  • ElKassarN, GressRE. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol. 2009;7(1):1–7. doi:10.3109/15476910903453296
  • MarçaisA, Cherfils-ViciniJ, ViantC, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol. 2014;15(8):749–757. doi:10.1038/ni.293624973821
  • DunneJ, LynchS, O’FarrellyC, et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J Immunol. 2001;167(6):3129–3138. doi:10.4049/jimmunol.167.6.312911544298
  • SkakK, FrederiksenKS, LundsgaardD. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology. 2008;123(4):575–583. doi:10.1111/j.1365-2567.2007.02730.x18005035
  • FrederiksenKS, LundsgaardD, FreemanJA, et al. IL-21 induces in vivo immune activation of NK cells and CD8+ T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother. 2008;57(10):1439–1449. doi:10.1007/s00262-008-0479-418286285
  • CellaM, SalioM, SakakibaraY, et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med. 1999;189(5):821–829. doi:10.1084/jem.189.5.82110049946
  • MüllerL, AignerP, StoiberD. Type I interferons and natural killer cell regulation in cancer. Front Immunol. 2017;8:304. doi:10.3389/fimmu.2017.0030428408907
  • IvashkivLB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–558. doi:10.1038/s41577-018-0029-z29921905
  • AbikoK, MatsumuraN, HamanishiJ, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112(9):1501–1509. doi:10.1038/bjc.2015.10125867264
  • MoX, ZhangH, PrestonS, et al. Interferon-γ signaling in melanocytes and melanoma cells regulates expression of CTLA-4. Cancer Res. 2018;78(2):436–450. doi:10.1158/0008-5472.Can-17-161529150430
  • BakerKJ, HoustonA, BrintE. IL-1 family members in cancer; two sides to every story. Front Immunol. 2019;10:1197. doi:10.3389/fimmu.2019.0119731231372
  • HyodoY, MatsuiK, HayashiN, et al. IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol. 1999;162(3):1662–1668.9973427
  • YoonD-Y, ChoY-S, ParkJ-W, KimS-H, KimJ-W. Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin Chem Lab Med. 2004;42(5):499–506. doi:10.1515/cclm.2004.08515202785
  • KimI-K, KohC-H, JeonI, et al. GM-CSF promotes antitumor immunity by inducing Th9 cell responses. Cancer Immunol Res. 2019;7(3):498–509. doi:10.1158/2326-6066.Cir-18-051830728152
  • HardeeME, ArcasoyMO, BlackwellKL, KirkpatrickJP, DewhirstMW. Erythropoietin biology in cancer. Clin Cancer Res. 2006;12(2):332–339. doi:10.1158/1078-0432.Ccr-05-177116428469
  • KindlerV, ThorensB, de KossodoS, et al. Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc Natl Acad Sci. 1986;83(4):1001–1005. doi:10.1073/pnas.83.4.10013081887
  • DouganM, DranoffG, DouganSK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity. 2019;50(4):796–811. doi:10.1016/j.immuni.2019.03.02230995500
  • MiddelP, BrauneckS, MeyerW, RadzunH-J. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma. BMC Cancer. 2010;10(1):578. doi:10.1186/1471-2407-10-57820969772
  • KatohM. FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (review). Int J Mol Med. 2016;38(1):3–15. doi:10.3892/ijmm.2016.262027245147
  • ImJH, BuzzelliJN, JonesK, et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat Commun. 2020;11(1):4064. doi:10.1038/s41467-020-17914-x32792542
  • HuangC-T, ChangM-C, ChenY-L, et al. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation. Cancer Lett. 2015;359(1):117–126. doi:10.1016/j.canlet.2015.01.00725592043
  • YahyaMA, SharonSM, HantisteanuS, HallakM, BruchimI. The role of the insulin-like growth factor 1 pathway in immune tumor microenvironment and its clinical ramifications in gynecologic malignancies. Front Endocrinol (Lausanne). 2018;9:297. doi:10.3389/fendo.2018.0029729922232
  • ZhengY, YangW, AldapeK, HeJ, LuZ. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288(44):31488–31495. doi:10.1074/jbc.M113.49902024045955
  • MacDonaldF, ZaissDMW. The immune system’s contribution to the clinical efficacy of EGFR antagonist treatment. Front Pharmacol. 2017;8:575. doi:10.3389/fphar.2017.0057528970798
  • WangKP, KimM, Di CaroG, et al. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity. 2014;41(6):1052–1063. doi:10.1016/j.immuni.2014.11.00925526314
  • NumasakiM, FukushiJI, OnoM, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101(7):2620–2627. doi:10.1182/blood-2002-05-146112411307
  • ChenF, HuangG, HuangH. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol. 2020;145:827–834. doi:10.1016/j.ijbiomac.2019.11.15131756474
  • CuiL, CohenJA, BroadersKE, BeaudetteTT, FrechetJMJ. Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconj Chem. 2011;22(5):949–957. doi:10.1021/bc100596w
  • SabelMS, SuG, GriffithKA, ChangAE. Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer. Breast Cancer Res Treat. 2010;122(2):325–336. doi:10.1007/s10549-009-0570-319802695
  • AroraA, SuG, MathiowitzE, et al. Neoadjuvant intratumoral cytokine-loaded microspheres are superior to postoperative autologous cellular vaccines in generating systemic anti-tumor immunity. J Surg Oncol. 2006;94(5):403–412. doi:10.1002/jso.2057216967445
  • GuanY, ZhengZ, LiangL, et al. The apoptosis of OVCAR-3 induced by TNF-α plus IFN-γ co-immobilized polylactic acid copolymers. J Mater Chem. 2012;22(29):14746–14755. doi:10.1039/c2jm31972a
  • LiuX, GaoX, ZhengS, et al. Modified nanoparticle mediated IL-12 immunogene therapy for colon cancer. Nanomedicine. 2017;13(6):1993–2004. doi:10.1016/j.nano.2017.04.00628428054
  • YangL, PangY, MosesHL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–227. doi:10.1016/j.it.2010.04.00220538542
  • MahapatroA, SinghDK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9(1):55. doi:10.1186/1477-3155-9-5522123084
  • JainRA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–2490. doi:10.1016/s0142-9612(00)00115-011055295
  • XuQ, GuoL, GuX, et al. Prevention of colorectal cancer liver metastasis by exploiting liver immunity via chitosan-TPP/nanoparticles formulated with IL-12. Biomaterials. 2012;33(15):3909–3918. doi:10.1016/j.biomaterials.2012.02.01422374455
  • Demento S, Steenblock ER, Fahmy TM. Biomimetic approaches to modulating the T cell immune response with nano- and micro- particles. Annu Int Conf IEEE Eng Med Biol Soc. 2009:1161–1166, doi:10.1109/iembs.2009.5332625
  • SuzukiR, NamaiE, OdaY, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release. 2010;142(2):245–250. doi:10.1016/j.jconrel.2009.10.02719883708
  • DassC, Hallaj-NezhadiS, LotfipourF. Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci. 2010;13(3):472–485. doi:10.18433/j3630v21092717
  • GabizonA, ChemlaM, TzemachD, HorowitzAT, GorenD. Liposome longevity and stability in circulation: effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines. J Drug Target. 1996;3(5):391–398. doi:10.3109/106118696089968308866658
  • PapahadjopoulosD, AllenTM, GabizonA, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–11464. doi:10.1073/pnas.88.24.114601763060
  • CurnisF, FiocchiM, SacchiA, et al. NGR-tagged nano-gold: a new CD13-selective carrier for cytokine delivery to tumors. Nano Res. 2016;9(5):1393–1408. doi:10.1007/s12274-016-1035-827226823
  • BrzoskaK, GradzkaI, KruszewskiM. Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor. Toxicol Appl Pharmacol. 2018;356:140–150. doi:10.1016/j.taap.2018.08.00530096344
  • MohseniN, SarvestaniFS, ArdestaniMS, KazemilomedashtF, GhorbaniM. Inhibitory effect of gold nanoparticles conjugated with interferon gamma and methionine on breast cancer cell line. Asian Pac J Trop Biomed. 2016;6(2):173–178. doi:10.1016/j.apjtb.2015.10.014
  • CaiW, GaoT, HongH, SunJ. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32. doi:10.2147/nsa.S378824198458
  • GiljohannDA, SeferosD, DanielW, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 2010;49(19):3280–3294. doi:10.1002/anie.200904359
  • ChoiEW, ShinIS, ChaeYJ, et al. Effects of GM-CSF gene transfer using silica-nanoparticles as a vehicle on white blood cell production in dogs. Exp Hematol. 2008;36(7):807–815. doi:10.1016/j.exphem.2008.01.00718375041
  • AllenIC, ShirasunaK, UsuiF, et al. Interferon-tau attenuates uptake of nanoparticles and secretion of interleukin-1β in macrophages. PLoS One. 2014;9. doi:10.1371/journal.pone.0113974
  • GuL, RuffLE, QinZ, et al. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater. 2012;24(29):3981–3987. doi:10.1002/adma.20120077622689074
  • HuB, DuH-J, YanG-P, et al. Magnetic polycarbonate microspheres for tumor-targeted delivery of tumor necrosis factor. Drug Deliv. 2014;21(3):204–212. doi:10.3109/10717544.2013.84360924117028
  • MejiasR, Pérez-YagüeS, GutiérrezL, et al. Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials. 2011;32(11):2938–2952. doi:10.1016/j.biomaterials.2011.01.00821277630