133
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Jieduan-Niwan (JDNW) Formula Ameliorates Hepatocyte Apoptosis: A Study of the Inhibition of E2F1-Mediated Apoptosis Signaling Pathways in Acute-on-Chronic Liver Failure (ACLF) Using Rats

ORCID Icon, , , , , , , & show all
Pages 3845-3862 | Published online: 08 Sep 2021

References

  • Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association, Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. [Guideline for diagnosis and treatment of liver failure (2018)]. Chin J Clin Hepatol. 2019;35(1):38–44. Chinese. doi:10.3969/j.issn.1001-5256
  • TrebickaJ, SundaramV, MoreauR, JalanR, ArroyoV. Liver transplantation for acute-on-chronic liver failure: science or fiction?Liver Transpl. 2020;26(7):906–915. doi:10.1002/lt.2578832365422
  • TrebickaJ, GuW, Ibáñez-SamaniegoL, et al. Rebleeding and mortality risk are increased by ACLF but reduced by pre-emptive TIPS. J Hepatol. 2020;73(5):1082–1091. S0168-8278(20)30236-1. doi:10.1016/j.jhep.2020.04.02432339602
  • SingalAK, AhmedZ, AxleyP, et al. Hospitalizations for acute on chronic liver failure at academic compared to non-academic centers have higher mortality. Dig Dis Sci. 2021;66(4):1306–1314. doi:10.1007/s10620-020-06263-w32318884
  • CaiJ, HanT, NieC, et al. Biomarkers of oxidation stress, inflammation, necrosis and apoptosis are associated with hepatitis B-related acute-on-chronic liver failure. Clin Res Hepatol Gastroenterol. 2016;40(1):41–50. doi:10.1016/j.clinre.2015.06.00926189982
  • XueR, YangJ, JiaL, et al. Mitofusin2, as a protective target in the liver, controls the balance of apoptosis and autophagy in acute-on-chronic liver failure. Front Pharmacol. 2019;10:601. doi:10.3389/fphar.2019.0060131231215
  • WuY, DingJ, SunQ, et al. Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells. Medicine. 2018;97(4):e9483. doi:10.1097/MD.000000000000948329369172
  • YangW, HaoY, HouW, et al. Jieduan-Niwan formula reduces liver apoptosis in a rat model of acute-on-chronic liver failure by regulating the E2F1-mediated intrinsic apoptosis pathway. Evid Based Complement Alternat Med. 2019;2019:8108503. doi:10.1155/2019/810850331827563
  • KubotaK, InoueK, HashimotoR, et al. Tumor necrosis factor receptor-associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N-cadherin expression. J Neurochem. 2009;110(2):496–508. doi:10.1111/j.1471-4159.2009.06099.x19490362
  • PflaumJ, SchlosserS, MüllerM. p53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285. doi:10.3389/fonc.2014.0028525374842
  • WuZ, ZhengS, YuQ. The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol. 2009;41(12):2389–2397. doi:10.1016/j.biocel.2009.06.00419539777
  • PhillipsAC, VousdenKH. E2F-1 induced apoptosis. Apoptosis. 2001;6(3):173–182. doi:10.1023/A:101133262574011388666
  • LvH, LiuR, FuJ, et al. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway. Cell Cycle. 2014;13(18):2962–2974. doi:10.4161/15384101.2014.94720325486483
  • MoonNS, Di StefanoL, MorrisEJ, PatelR, WhiteK, DysonNJ. E2F and p53 induce apoptosis independently during drosophila development but intersect in the context of DNA damage. PLoS Genet. 2008;4(8):e1000153. doi:10.1371/journal.pgen.100015318688282
  • GinsbergD. E2F1 pathways to apoptosis. FEBS Lett. 2002;529(1):122–125. doi:10.1016/s0014-5793(02)03270-212354623
  • MoroniMC, HickmanES, Lazzerini DenchiE, et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol. 2001;3(6):552–558. doi:10.1038/3507852711389439
  • FurukawaY, NishimuraN, FurukawaY, et al. Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem. 2002;277(42):39760–39768. doi:10.1074/jbc.M20080520012149244
  • PhillipsAC, ErnstMK, BatesS, RiceNR, VousdenKH. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell. 1999;4(5):771–781. doi:10.1016/s1097-2765(00)80387-110619024
  • FanT, HanL, CongR, LiangJ, ZhangY-S. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin. 2005;37(11):719–727. doi:10.1111/j.1745-7270.2005.00108.x16270150
  • WangX, CaoQ, ZhangY, SuX. Activation and regulation of Caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55(1):553–572. doi:10.1146/annurev-pharmtox-010814-12441425340928
  • IslamMS, TakanoR, YokochiT, et al. Programmed expression of pro-apoptotic BMCC1 during apoptosis, triggered by DNA damage in neuroblastoma cells. BMC Cancer. 2019;19(1):542. doi:10.1186/s12885-019-5772-431170959
  • AubreyBJ, KellyGL, JanicA, HeroldMJ, StrasserA. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?Cell Death Differ. 2018;25(1):104–113. doi:10.1038/cdd.2017.16929149101
  • IrwinM, MarinMC, PhillipsAC, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000;407(6804):645–648. doi:10.1038/3503661411034215
  • VinceJE, PantakiD, FelthamR, et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J Biol Chem. 2009;284(51):35906–35915. doi:10.1074/jbc.M109.07225619815541
  • CroxtonR, MaY, SongL, HauraEB, CressDW. Direct repression of the Mcl-1 promoter by E2F-1. Oncogene. 2002;21(9):1359–1369. doi:10.1038/sj.onc.120515711857079
  • ChenZ, HuangL, LiM, MengL, YingS, XuA. Inhibitory effects of isocryptotanshinone on gastric cancer. Sci Rep. 2018;8(1):9307. doi:10.1038/s41598-018-27638-029915371
  • ElkholiR, FlorosKV, ChipukJE. The role of BH3-only proteins in tumor cell development, signaling, and treatment. Genes Cancer. 2011;2(5):523–537. doi:10.1177/194760191141717721901166
  • KnezevicD, BrashDE. Role of E2F1 in apoptosis: a case study in feedback loops. Cell Cycle. 2004;3(6):729–732. doi:10.4161/cc.3.6.90715107604
  • HernaezR, SolàE, MoreauR, GinèsP. Acute-on-chronic liver failure: an update. Gut. 2017;66(3):541–553. doi:10.1136/gutjnl-2016-31267028053053
  • China Association of Chinese Medicine. [Guide lines for clinical diagnosis and treatment of acute-on-chronic liver failure in traditional Chinese medicine]. J Clin Hepatol. 2019;35(03):494–503. Chinese. doi:10.3969/j.issn.1001-5256.2019.03.009
  • QianY. [Using Jieduan-Niwan method treats chronic severe hepatitis]. Beijing J Tradit Chin Med. 2008;27(02):85–87. Chinese. doi:10.16025/j.1674-1307
  • LiX. [Professor Qian ying’s considerations and strategies on treatment of chronic severe hepatitis by blocking and reversing therapy]. Shanghai J Tradit Chin Med. 2007;41(1):1–4. Chinese. doi:10.16305/j.1007-1334.2007.01.001
  • HuJ, QianY, YaoN, et al. [Treatment of chronic severe hepatitis B by Jieduan Niwan method]. Chin J Integr Tradit West Med Liver Dis. 2010;20(4):200–203. Chinese. doi:10.3969/j.issn.1005-0264
  • HouW, HaoY, YangW, et al. [Effects of Jieduan Niwan prescription on IL-6 and TNF-α in serum and hepatic tissue of acute-on-chronic liver failure rats]. Chin J Inf Tradit Chin Med. 2018;25(07):49–52. Chinese. doi:10.3969/j.issn.1005-5304.2018.07.012
  • HaoY, YangW, HouW, et al. [Effects of Jieduan Niwan formula on the pathway of cell proliferation in ACLF rats]. Inf Tradit Chin Med. 2018;35(03):12–17. Chinese. doi:10.19656/j.cnki.1002-2406.180074
  • HaoY, YangW, HouW, et al. [Regulation mechanism of Jieduan Niwan formula on E2F1 signaling pathway in rats with acute-on chronic hepatic failure]. Global Tradit Chin Med. 2018;11(03):321–326. Chinese. doi:10.3969/j.issn.1674-1749
  • LiuZ, WuW, ZhangQ. [The influence of the prescription of ‘truncation and inverse draft’ on the ET and TNF-α of acute-on-chronic liver failure model rats]. Chin J Med Guide. 2011;13(04):650–652. Chinese. doi:10.3969/j.issn.1009-0959.2011.04.054
  • WangB, WangZ, YinW, HuangS, LiJ. [Studies on experimental immune hepatic fibrosis model]. Natl Med J Chin. 1989;69(09):503–505. Chinese.
  • LiuX, MengY, ChenY, ZhangL, DuanZ. [Exploration of establishing rat model of ACLF in human serum album in-induced cirrhosis]. Chin J Gastroenterol Hepatol. 2008;17(10):790–793. Chinese. doi:10.3969/j.issn.1006-5709.2008.10.004
  • SchindelinJ, Arganda-CarrerasI, FriseE, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi:10.1038/nmeth.201922743772
  • GongY, LiD, LiL, et al. Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol. 2021;147:111912. doi:10.1016/j.fct.2020.11191233290806
  • SuH, MaZ, GuoA, WuH, YangX. Salvianolic acid B protects against sepsis-induced liver injury via activation of SIRT1/PGC-1α signaling. Exp Ther Med. 2020;20(3):2675–2683. doi:10.3892/etm.2020.902032765761
  • YanXF, ZhaoP, MaDY, et al. Salvianolic acid B protects hepatocytes from H2O2 injury by stabilizing the lysosomal membrane. World J Gastroenterol. 2017;23(29):5333–5344. doi:10.3748/wjg.v23.i29.533328839433
  • LiC, LiQ, LiuYY, et al. Protective effects of notoginsenoside R1 on intestinal ischemia-reperfusion injury in rats. Am J Physiol Gastrointest Liver Physiol. 2014;306(2):G111–G122. doi:10.1152/ajpgi.00123.201324232000
  • SongB, SunY, ChuY, et al. Ginsenoside Rb1 alleviated high-fat-diet-induced hepatocytic apoptosis via peroxisome proliferator-activated receptor γ. Biomed Res Int. 2020;2020:2315230. doi:10.1155/2020/231523032733933
  • GaoX, XuJ, LiuH. Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. Mol Med Rep. 2020;22(3):2424–2432. doi:10.3892/mmr.2020.1133732705256
  • LiuL, GaoH, WangH, et al. Catalpol promotes cellular apoptosis in human HCT116 colorectal cancer cells via microRNA-200 and the downregulation of PI3K-Akt signaling pathway. Oncol Lett. 2017;14(3):3741–3747. doi:10.3892/ol.2017.658028927141
  • KimH, PanJH, KimSH, LeeJH, ParkJW. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie. 2018;150:131–138. doi:10.1016/j.biochi.2018.05.00829787793
  • ZhongS, LiYG, JiDF, LinTB, LvZQ. Protocatechualdehyde induces S-phase arrest and apoptosis by stimulating the p27(KIP1)-Cyclin A/D1-CDK2 and mitochondrial apoptotic pathways in HT-29 cells. Molecules. 2016;21(7):934. doi:10.3390/molecules21070934
  • ZhangX, DingJ, GouC, et al. Qingchangligan formula attenuates the inflammatory response to protect the liver from acute failure induced by D-galactosamine/ Lipopolysaccharide in mice. J Ethnopharmacol. 2017;201:108–116. doi:10.1016/j.jep.2016.11.00727833028
  • MoreauR. The pathogenesis of ACLF: the inflammatory response and immune function. Semin Liver Dis. 2016;36(2):133–140. doi:10.1055/s-0036-158319927172355
  • TriantafyllouE, WoollardKJ, McPhailMJW, AntoniadesCG, PossamaiLA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018;9:2948. doi:10.3389/fimmu.2018.0294830619308
  • Blasco-AlgoraS, Masegosa-AtazJ, Gutiérrez-GarcíaML, Alonso-LópezS, Fernández-RodríguezCM. Acute-on-chronic liver failure: pathogenesis, prognostic factors and management. World J Gastroenterol. 2015;21(42):12125–12140. doi:10.3748/wjg.v21.i42.1212526576097
  • HaderskiGJ, KandarBM, BrackettCM, et al. TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects. PLoS One. 2020;15(2):e0227940. doi:10.1371/journal.pone.022794032027657
  • WangX, WuL, ZhangQ, et al. Methyl 3,4-dihydroxybenzoate protects against D-galN/LPS-induced acute liver injury by inhibiting inflammation and apoptosis in mice. J Pharm Pharmacol. 2019;71(7):1082–1088. doi:10.1111/jphp.1309131032922
  • TakheawN, EarwongP, LaopajonW, PataS, KasinrerkW, KanellopoulosJ. Interaction of CD99 and its ligand upregulates IL-6 and TNF-α upon T cell activation. PLoS One. 2019;14(5):e0217393. doi:10.1371/journal.pone.021739331120992
  • RibeiroCV, RochaBFB, OliveiraE, et al. Leishmania infantum induces high phagocytic capacity and intracellular nitric oxide production by human proinflammatory monocyte. Mem Inst Oswaldo Cruz. 2020;115:e190408. doi:10.1590/0074-0276019040832321156
  • ZhangZ, LiuW, ZhaoL, et al. Retinoblastoma 1 protects T cell maturation from premature apoptosis by inhibiting E2F1. Development. 2018;145(1):dev158139. doi:10.1242/dev.15813929229770
  • GaoG, YuZ, YanJ, et al. Lowering blood ammonia prevents hepatocyte injury and apoptosis. Int J Clin Exp Med. 2015;8(8):12347–12355.26550144
  • TaminiauA, DraimeA, TysJ, et al. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res. 2016;44(15):7331–7349. doi:10.1093/nar/gkw60627382069
  • BierbrauerA, JacobM, VoglerM, FuldaS. A direct comparison of selective BH3-mimetics reveals BCL-XL, BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. Br J Cancer. 2020;122(10):1544–1551. doi:10.1038/s41416-020-0795-932203216