708
Views
39
CrossRef citations to date
0
Altmetric
Review

Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure

, &
Pages 1819-1833 | Published online: 03 May 2021

References

  • WangX, FangX, CaiZ, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: a systemic review and meta-analysis. Research (Wash D C). 2020;2020:2402961. doi:10.34133/2020/240296132377638
  • WuD, WuT, LiuQ, YangZ. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44–48. doi:10.1016/j.ijid.2020.03.00432171952
  • LiuK, ChenY, LinR, HanK. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18. doi:10.1016/j.jinf.2020.03.005
  • FelsensteinS, HerbertJA, McNamaraPS, HedrichCM. COVID-19: immunology and treatment options. Clin Immunol. 2020;215:108448. doi:10.1016/j.clim.2020.10844832353634
  • ZhangT, HeY, XuW, MaA, YangY, XuKF. Clinical trials for the treatment of Coronavirus disease 2019 (COVID-19): a rapid response to urgent need. Sci China Life Sci. 2020;63(5):774–776. doi:10.1007/s11427-020-1660-232124179
  • ManhasS, AnjaliA, MansoorS, et al. Covid-19 pandemic and current medical interventions. Arch Med Res. 2020;51(6):473–481. doi:10.1016/j.arcmed.2020.05.00732499154
  • HorieS, GonzalezHE, LaffeyJG, MastersonCH. Cell therapy in acute respiratory distress syndrome. J Thorac Dis. 2018;10(9):5607–5620. doi:10.21037/jtd.2018.08.2830416812
  • ZumlaA, HuiDS, AzharEI, MemishZA, MaeurerM. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet (London, England). 2020;395(10224):e35–e36. doi:10.1016/s0140-6736(20)30305-6
  • ForniG, MantovaniA, ForniG, et al. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;28(2):626–639. doi:10.1038/s41418-020-00720-933479399
  • AhmedN, ArafY, UllahM. Potential roles of vitamin D in the treatment of COVID-19 patient and improving maternal and child health during pandemic. J Adv Biotechnol Exp Ther. 2021;4:133. doi:10.5455/jabet.2021.d114
  • FarjanaM, MoniA, SohagAAM, et al. Repositioning vitamin C as a promising option to alleviate complications associated with COVID-19. Infect Chemother. 2020;52(4):461–477. doi:10.3947/ic.2020.52.4.46133263242
  • HossainKS, HossainMG, MoniA, et al. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon. 2020;6(12):e05798. doi:10.1016/j.heliyon.2020.e0579833363261
  • IslamMN, HossainKS, SarkerPP, et al. Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. Phytother Res. 2021. doi:10.1002/ptr.6895
  • YangY, IslamMS, WangJ, LiY, ChenX. Traditional Chinese Medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 2020;16(10):1708–1717. doi:10.7150/ijbs.4553832226288
  • ChanKW, WongVT, TangSCW. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease. Am J Chin Med. 2020;48(3):737–762. doi:10.1142/s0192415x2050037832164424
  • KhannaK, KohliSK, KaurR, et al. Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine. 2020:153361. doi:10.1016/j.phymed.2020.15336133485605
  • AngL, SongE, LeeHW, LeeMS. Herbal medicine for the treatment of Coronavirus Disease 2019 (COVID-19): a Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med. 2020;9(5):1583. doi:10.3390/jcm9051583
  • PatelB, SharmaS, NairN, MajeedJ, GoyalRK, DhobiM. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem. 2021. doi:10.1007/s11010-021-04084-7
  • KangS, MinH. Ginseng, the ‘Immunity Boost’: the effects of panax ginseng on immune system. J Ginseng Res. 2012;36(4):354–368. doi:10.5142/jgr.2012.36.4.35423717137
  • ShahrajabianMH, SunW, ChengQ. The power of natural Chinese medicine, ginger and ginseng root in an organic life. Middle East J Sci Res. 2019;27:64–71.
  • DaliriEB-M, KimS-H, ParkB-J, et al. Effects of different processing methods on the antioxidant and immune stimulating abilities of garlic. Food Sci Nutr. 2019;7(4):1222–1229. doi:10.1002/fsn3.94231024695
  • Sharifi-RadM, MnayerD, Morais-BragaMFB, et al. Echinacea plants as antioxidant and antibacterial agents: from traditional medicine to biotechnological applications. Phytother Res. 2018;32(9):1653–1663. doi:10.1002/ptr.610129749084
  • ChengPW, NgLT, ChiangLC, LinCC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 2006;33(7):612–616. doi:10.1111/j.1440-1681.2006.04415.x16789928
  • LiSY, ChenC, ZhangHQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. doi:10.1016/j.antiviral.2005.02.00715885816
  • LinC-W, TsaiF-J, TsaiC-H, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36–42. doi:10.1016/j.antiviral.2005.07.00216115693
  • RyuYB, JeongHJ, KimJH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010;18(22):7940–7947. doi:10.1016/j.bmc.2010.09.03520934345
  • YuMS, LeeJ, LeeJM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22(12):4049–4054. doi:10.1016/j.bmcl.2012.04.08122578462
  • CinatlJ, MorgensternB, BauerG, ChandraP, RabenauH, DoerrHW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet (London, England). 2003;361:2045–2046. doi:10.1016/S0140-6736(03)13615-X
  • RahmanMT. Potential benefits of combination of Nigella sativa and Zn supplements to treat COVID-19. J Herb Med. 2020;23:100382. doi:10.1016/j.hermed.2020.10038232834942
  • MaideenNMP. Prophetic medicine-Nigella Sativa (Black cumin seeds)-potential herb for COVID-19? J Pharmacopunct. 2020;23(2):62–70. doi:10.3831/kpi.2020.23.010
  • KulyarMF-EA, LiR, MehmoodK, WaqasM, LiK, LiJ. Potential influence of Nigella sativa (Black cumin) in reinforcing immune system: a hope to decelerate the COVID-19 pandemic. Phytomedicine. 2020;153277. doi:10.1016/j.phymed.2020.15327732773257
  • BakhtiarL, GrunerOC, ShahMH, CrookJR, NasrSH. Avicenna. In: The Canon of Medicine (Al-Qanunfi’l-Tibb); 1999: Great Books of the Islamic World, Chicago, IL : KAZI Publications 1999-2014.
  • GhahramanlooKH, KamalidehghanB, Akbari JavarH, Teguh WidodoR, MajidzadehK, NoordinMI. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des Devel Ther. 2017;11:2221–2226. doi:10.2147/dddt.s87251
  • HaseenaS, AithalM, DasK, SahebS. Phytochemical analysis of Nigella sativa and its effect on reproductive system. J Pharm Sci Res. 2015;7:514–517.
  • TavakkoliA, AhmadiA, RazaviBM, HosseinzadehH. Black seed (Nigella Sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran J Pharm Res. 2017;16(Suppl):2–23.29844772
  • AhmadA, HusainA, MujeebM, et al. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337–352. doi:10.1016/S2221-1691(13)60075-123646296
  • El–DakhakhnyM. Studies on the Chemical Constitution of Egyptian Nigella Sativa L. Seeds. II1) the essential oil. Planta Med. 1963;11(04):465–470. doi:10.1055/s-0028-1100266
  • HosseinzadehH, TaiariS, Nassiri-AslM. Effect of thymoquinone, a constituent of Nigella sativa L., on ischemia–reperfusion in rat skeletal muscle. Naunyn-Schmiedeberg Arch Pharmcol. 2012;385(5):503–508. doi:10.1007/s00210-012-0726-2
  • El GazzarM, El MezayenR, MareckiJC, NicollsMR, CanastarA, DreskinSC. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol. 2006;6(7):1135–1142. doi:10.1016/j.intimp.2006.02.00416714217
  • Gali-MuhtasibH, OckerM, KuesterD, et al. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med. 2008;12(1):330–342. doi:10.1111/j.1582-4934.2007.00095.x18366456
  • HalawaniE. Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Adv Biol Res. 2009;3:148–152.
  • Abdel AzeizA, DarweeshM, AminA. American science efficacy of thymoquinone against vaginal candidiasis in prednisolone-induced immunosuppressed mice. J Am Sci. 2013;9:155.
  • HosseinzadehH, ParvardehS. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine. 2004;11(1):56–64. doi:10.1078/0944-7113-0037614971722
  • SalemML, HossainMS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol. 2000;22(9):729–740. doi:10.1016/s0192-0561(00)00036-910884593
  • MahboubiM. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of Sinusitis. Integr Med Res. 2018;7(1):27–32. doi:10.1016/j.imr.2018.01.00529629288
  • El GazzarM, El MezayenR, NicollsMR, MareckiJC, DreskinSC. Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta. 2006;1760(7):1088–1095. doi:10.1016/j.bbagen.2006.03.00616624488
  • Muralidharan-ChariV, KimJ, AbuawadA, NaeemM, CuiH, MousaSA. Thymoquinone modulates blood coagulation in vitro via its effects on inflammatory and coagulation pathways. Int J Mol Sci. 2016;17(4):474. doi:10.3390/ijms1704047427043539
  • AlkharfyKM, AhmadA, JanBL, RaishM. Thymoquinone reduces mortality and suppresses early acute inflammatory markers of sepsis in a mouse model. Biomed Pharmacother. 2018;98:801–805. doi:10.1016/j.biopha.2018.01.02829571249
  • HaqA, AbdullatifM, LoboPI, KhabarKS, ShethKV, al-SedairyST. Nigella sativa: effect on human lymphocytes and polymorphonuclear leukocyte phagocytic activity. Immunopharmacology. 1995;30(2):147–155. doi:10.1016/0162-3109(95)00016-m8530256
  • HaqA, LoboPI, Al-TufailM, RamaNR, Al-SedairyST. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. Int J Immunopharmacol. 1999;21(4):283–295. doi:10.1016/s0192-0561(99)00010-710408636
  • BarakatEM, El WakeelLM, HagagRS. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol. 2013;19(16):2529–2536. doi:10.3748/wjg.v19.i16.252923674855
  • OnifadeAA, JewellAP, AdedejiWA. Nigella sativa concoction induced sustained seroreversion in HIV patient. Afr J Tradit Complement Altern Med. 2013;10(5):332–335.24311845
  • OskoueiZ, AkaberiM, HosseinzadehH. A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review. Iran J Basic Med Sci. 2018;21(12):1200–1209. doi:10.22038/ijbms.2018.31703.763030627362
  • AhmadA, RehmanM, AhmadP, AlkharfyK. Covid-19 and thymoquinone: connecting the dots. Phytother Res. 2020;34(11):2786–2789. doi:10.1002/ptr.679332588453
  • RayPD, HuangBW, TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi:10.1016/j.cellsig.2012.01.00822286106
  • BirbenE, SahinerUM, SackesenC, ErzurumS, KalayciO. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. doi:10.1097/WOX.0b013e318243961323268465
  • BetteridgeDJ. What is oxidative stress? Metabolism. 2000;49(2Suppl 1):3–8. doi:10.1016/s0026-0495(00)80077-3
  • HagenTM. Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal. 2003;5(5):503–506. doi:10.1089/15230860377031014914580304
  • WrightE Jr, Scism-BaconJL, GlassLC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–314. doi:10.1111/j.1368-5031.2006.00825.x16494646
  • Di VirgilioF. New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr Pharm Des. 2004;10(14):1647–1652. doi:10.2174/138161204338472715134562
  • KattoorAJ, PothineniNVK, PalagiriD, MehtaJL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42. doi:10.1007/s11883-017-0678-628921056
  • WarisG, AhsanH. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14. doi:10.1186/1477-3163-5-1416689993
  • RomanoAD, ServiddioG, de MatthaeisA, BellantiF, VendemialeG. Oxidative stress and aging. J Nephrol. 2010;23(Suppl 15):S29–36.20872368
  • MahmoudYK, AbdelrazekHMA. Cancer: thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother. 2019;115:108783. doi:10.1016/j.biopha.2019.10878331060003
  • LeisegangK, AlmaghrawiW, HenkelR. The effect of Nigella sativa oil and metformin on male seminal parameters and testosterone in Wistar rats exposed to an obesogenic diet. Biomed Pharmacother. 2021;133:111085. doi:10.1016/j.biopha.2020.11108533378981
  • UmarS, ZarganJ, UmarK, AhmadS, KatiyarCK, KhanHA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact. 2012;197(1):40–46. doi:10.1016/j.cbi.2012.03.00322450443
  • KassabRB, El-HennamyRE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl Sci. 2017;4(3):160–167. doi:10.1016/j.ejbas.2017.07.002
  • BadaryOA, TahaRA, Gamal el-DinAM, Abdel-WahabMH. Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol. 2003;26(2):87–98. doi:10.1081/dct-12002040412816394
  • KhanMA, AnwarS, AljarbouAN, et al. Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int J Biol Macromol. 2014;65:16–20. doi:10.1016/j.ijbiomac.2014.01.00124412154
  • GuanWJ, NiZY, HuY, et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa200203232109013
  • HuangC, WangY, LiX, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-531986264
  • GalaniIE, AndreakosE. Neutrophils in viral infections: current concepts and caveats. J Leukoc Biol. 2015;98(4):557–564. doi:10.1189/jlb.4VMR1114-555R26160849
  • SiesH, JonesDP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–383. doi:10.1038/s41580-020-0230-332231263
  • DeDiegoML, Nieto-TorresJL, Regla-NavaJA, et al. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913–924. doi:10.1128/jvi.02576-1324198408
  • KenslerTW, WakabayashiN, BiswalS. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. doi:10.1146/annurev.pharmtox.46.120604.14104616968214
  • RabbaniPS, SoaresMA, HameediSG, et al. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68(1):141–155. doi:10.2337/db18-023230352880
  • SchmidlinCJ, DodsonMB, MadhavanL, ZhangDD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med. 2019;134:702–707. doi:10.1016/j.freeradbiomed.2019.01.01630654017
  • WuC, ChenX, CaiY, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus Disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi:10.1001/jamainternmed.2020.099432167524
  • LiuQ, GaoY, CiX. Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev. 2019;2019:7090534. doi:10.1155/2019/709053430728889
  • Saddawi-KonefkaR, SeeligeR, GrossET, et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 2016;16(9):2348–2358. doi:10.1016/j.celrep.2016.07.07527545889
  • BrüneB, DehneN, GrossmannN, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal. 2013;19(6):595–637. doi:10.1089/ars.2012.478523311665
  • NemmarA, Al-SalamS, ZiaS, et al. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol. 2011;164(7):1871–1882. doi:10.1111/j.1476-5381.2011.01442.x21501145
  • Ammar ElSM, GameilNM, ShawkyNM, NaderMA. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int Immunopharmacol. 2011;11(12):2232–2236. doi:10.1016/j.intimp.2011.10.01322051975
  • BergerP, GirodetP-O, Manuel Tunon-de-laraJ. Mast cell myositis: a new feature of allergic asthma? Allergy. 2005;60(10):1238–1240. doi:10.1111/j.1398-9995.2005.00898.x16134988
  • AlkharfyK. Nitric oxide pathway as a potential therapeutic target in COVID-19. FARMACIA. 2020;68:966–969. doi:10.31925/farmacia.2020.6.2
  • HoughtonPJ, ZarkaR, de Las HerasB, HoultJR. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995;61(1):33–36. doi:10.1055/s-2006-9579947700988
  • MansourM, TornhamreS. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem. 2004;19(5):431–436. doi:10.1080/1475636040000207215648658
  • HossenMJ, YangWS, KimD, AravinthanA, KimJ-H, ChoJY. Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep. 2017;7(1):42995. doi:10.1038/srep4299528216638
  • SharmaAK, FernandezLG, AwadAS, KronIL, LaubachVE. Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-alpha during pulmonary ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L105–13. doi:10.1152/ajplung.00470.200617416740
  • KorbeckiJ, Baranowska-BosiackaI, GutowskaI, ChlubekD. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J Physiol Pharmacol. 2013;64(4):409–421.24101387
  • Shaterzadeh-YazdiH, NoorbakhshMF, HayatiF, SamarghandianS, FarkhondehT. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc Hematol Disord Drug Targets. 2018;18(1):52–60. doi:10.2174/1871529x1866618021211481629437018
  • MajdalawiehAF, FayyadMW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int Immunopharmacol. 2015;28(1):295–304. doi:10.1016/j.intimp.2015.06.02326117430
  • XuanNT, ShumilinaE, QadriSM, GötzF, LangF. Effect of thymoquinone on mouse dendritic cells. Cel Physiol Biochem. 2010;25(2–3):307–314. doi:10.1159/000276563
  • MohanyM, El-FekiM, RefaatI, GarraudO, BadrG. Thymoquinone ameliorates the immunological and histological changes induced by exposure to imidacloprid insecticide. J Toxicol Sci. 2012;37(1):1–11. doi:10.2131/jts.37.122293407
  • El BabaR, HerbeinG. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenetics. 2020;12(1):118. doi:10.1186/s13148-020-00912-732758273
  • ChlamydasS, PapavassiliouAG. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2020;1–8. doi:10.1080/15592294.2020.1796896
  • ChaiP, YuJ, GeS, JiaR, FanX. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J Hematol Oncol. 2020;13(1):43. doi:10.1186/s13045-020-00883-532366279
  • StefanskaB, KarlicH, VargaF, Fabianowska-MajewskaK, HaslbergerA. Epigenetic mechanisms in anti-cancer actions of bioactive food components–the implications in cancer prevention. Br J Pharmacol. 2012;167(2):279–297. doi:10.1111/j.1476-5381.2012.02002.x22536923
  • PatraSK, SzyfM. DNA methylation-mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FAS ligand and RASSF1A. FEBS J. 2008;275(21):5217–5235. doi:10.1111/j.1742-4658.2008.06658.x18803665
  • KarS, ParbinS, DebM, et al. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell Mol Life Sci. 2014;71(6):1017–1032. doi:10.1007/s00018-013-1482-224114325
  • PaluszczakJ, Krajka-KuźniakV, Baer-DubowskaW. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192(2):119–125. doi:10.1016/j.toxlet.2009.10.01019840838
  • ArafaE-SA, ZhuQ, ShahZI, et al. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res. 2011;706(1):28–35. doi:10.1016/j.mrfmmm.2010.10.00721040738
  • ParbinS, ShilpiA, KarS, et al. Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer. Article. Mol Biosyst. 2016;12(1):48–58. doi:10.1039/c5mb00412h26540192
  • LauAW, LiuP, InuzukaH, GaoD. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res. 2014;4(3):245–255.24959379
  • NinV, EscandeC, ChiniCC, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated Protein Kinase*. J Biol Chem. 2012;287(28):23489–23501. doi:10.1074/jbc.M112.36587422553202
  • BruscellaP, BottiniS, BaudessonC, PawlotskyJ-M, FerayC, TrabucchiM. Viruses and miRNAs: more friends than foes. Front Microbiol. 2017;8(824). doi:10.3389/fmicb.2017.00824
  • SohalSS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig. 2017;55(2):104–113. doi:10.1016/j.resinv.2016.11.006
  • CentaA, FonsecaAS, FerreiraS, et al. Deregulated miRNA expression is associated with endothelial dysfunction in post-mortem lung biopsies of COVID-19 patients. Am J Physiol Lung Cell Mol Physiol. 2021;320:L405–L412. doi:10.1152/ajplung.00457.2020
  • ImaniS, WeiC, ChengJ, et al. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget. 2017;8(13):21362–21379. doi:10.18632/oncotarget.1521428423483
  • FengY, ChenL, LuoQ, WuM, ChenY, ShiX. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther. 2018;12:171–177. doi:10.2147/DDDT.S157109
  • SuYL, WangX, MannM, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo. Blood. 2020;135(3):167–180. doi:10.1182/blood.201900204531805184
  • QiongL, ZhenR, LinlinZ, et al. Involvement of microRNA-146a in the inflammatory response of status epilepticus rats. CNS Neurol Disorders Drug Targets. 2017;16(6):686–693. doi:10.2174/1871527316666170505123956
  • SabbatinelliJ, GiulianiA, MatacchioneG, et al. Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech Ageing Dev. 2021;193:111413. doi:10.1016/j.mad.2020.11141333307107
  • KhanMA, TaniaM, FuJ. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today. 2019;24(12):2315–2322. doi:10.1016/j.drudis.2019.09.00731541714
  • SommerA, FörsterlingH-D, NaberK. Thymoquinone: shield and sword against SARS-CoV-2. Precis Nanomed. 2020. doi:10.33218/001c.12984
  • ForouzanfarF, BazzazBSF, HosseinzadehH. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci. 2014;17(12):929–938.25859296
  • ZihlifMA, MahmoudIS, GhanimMT, et al. Thymoquinone efficiently inhibits the survival of EBV-infected B cells and alters EBV gene expression. Integr Cancer Ther. 2013;12(3):257–263. doi:10.1177/153473541245882723089554
  • OyeroOG, ToyamaM, MitsuhiroN, et al. Selective inhibition of hepatitis C virus replication by alpha-zam, A Nigella sativa seed formulation. Afr J Tradit Complement Altern Med. 2016;13(6):144–148. doi:10.21010/ajtcam.v13i6.2028480371
  • UlasliM, GursesSA, BayraktarR, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep. 2014;41(3):1703–1711. doi:10.1007/s11033-014-3019-724413991
  • SeadawyMG, GadAF, ElhosenyMF, et al. In vitro: natural compounds (Thymol, Carvacrol, Hesperidine, and Thymoquinone) against Sars-Cov2 strain isolated from Egyptian patients. bioRxiv. 2020. doi:10.1101/2020.11.07.367649
  • XuH, LiuB, XiaoZ, et al. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect Dis Ther. 2021;10(1):483–494. doi:10.1007/s40121-021-00400-233532909
  • SengerMR, EvangelistaTCS, DantasRF, et al. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem Inst Oswaldo Cruz. 2020;115. doi:10.1590/0074-02760200254
  • ShaikhYI, Sameerâ shaikhÂVS, AhmedK, NazeruddinGM, PathanÂHM. The revelation of various compounds found in Nigella sativa L. (Black Cumin) and their possibility to inhibit COVID-19 infection based on the molecular docking and physical properties. Eng Sci. 2020;11:31–35. doi:10.30919/es8d1127
  • Sultan MohideenAK. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-Cov-2 envelope protein. Biointerface Res Appl Chem. 2021;11:8389–8401. doi:10.33263/BRIAC111.83898401
  • BouchentoufS, NoureddineM Identification of compounds from Nigella Sativa as new potential inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study; 2020.
  • YounessK, MohammedM, HoudaF. In silico investigation of the SARS CoV2 protease with thymoquinone, the Major Constituent of Nigella Sativa. Curr Drug Discov Technol. 2020;17:1–4. doi:10.2174/1570163817666200712164406
  • SekiouO, BouzianeI, BouslamaZ, DjemelA In-silico identification of potent inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2; 2020.
  • ElfikyAA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn. 2020;1–10. doi:10.1080/07391102.2020.1761881
  • IbrahimIM, AbdelmalekDH, ElshahatME, ElfikyAA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020;80(5):554–562. doi:10.1016/j.jinf.2020.02.02632169481
  • HendausMA, JomhaFA. Covid-19 induced superimposed bacterial infection. J Biomol Struct Dyn. 2020;1–7. doi:10.1080/07391102.2020.1772110
  • VaillancourtM, JorthP. The unrecognized threat of secondary bacterial infections with COVID-19. mBio. 2020;11(4):e01806–20. doi:10.1128/mBio.01806-2032769090
  • ChaiebK, KouidhiB, JrahH, MahdouaniK, BakhroufA. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med. 2011;11:29. doi:10.1186/1472-6882-11-2921489272
  • RandhawaMA, AlenazyAK, AlrowailiMG, BashaJ. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria. J Intercult Ethnopharmacol. 2017;6(1):97–101. doi:10.5455/jice.2016101802123828163966
  • RandhawaMA. In vitro antituberculous activity of thymoquinone, an active principle of Nigella sativa. J Ayub Med Coll Abbottabad. 2011;23(2):78–81.24800349
  • HariharanP, Paul-SatyaseelaM, GnanamaniA. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains. Lett Appl Microbiol. 2016;62(3):283–289. doi:10.1111/lam.1254426743923
  • MouwakehA, TelbiszÁ, SpenglerG, Mohácsi-FarkasC, KiskóG. Antibacterial and resistance modifying activities of Nigella sativa essential oil and its active compounds against listeria monocytogenes. In Vivo (Brooklyn). 2018;32(4):737–743. doi:10.21873/invivo.11302
  • SalemEM, YarT, BamosaAO, et al. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J Gastroenterol. 2010;16(3):207–214. doi:10.4103/1319-3767.6520120616418
  • SubramaniamS, ScharrerI. Procoagulant activity during viral infections. Front Biosci. 2018;23:1060–1081. doi:10.2741/4633
  • AggarwalS, GollapudiS, GuptaS. Increased TNF-alpha-induced apoptosis in lymphocytes from aged humans: changes in TNF-alpha receptor expression and activation of caspases. J Immunol. 1999;162(4):2154–2161.9973490
  • MasiP, HékimianG, LejeuneM, et al. Systemic inflammatory response syndrome is a major contributor to COVID-19-associated coagulopathy: insights from a Prospective, Single-Center Cohort Study. Circulation. 2020;142(6):611–614. doi:10.1161/circulationaha.120.04892532776849
  • GuoLP, LiuSX, YangQ. Effect of thymoquinone on acute kidney injury induced by sepsis in BALB/c mice. Biomed Res Int. 2020;2020:1594726. doi:10.1155/2020/159472632626733
  • GuptaR, GhoshA, SinghAK, MisraA. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes MetabSyndr. 2020;14(3):211–212. doi:10.1016/j.dsx.2020.03.002
  • KaatabiH, BamosaAO, BadarA, et al. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PLoS One. 2015;10(2):e0113486. doi:10.1371/journal.pone.011348625706772
  • SangiSMA, SulaimanMI, El-WahabMFA, AhmedaniEI, AliSS. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals. Pharmacogn Mag. 2015;11(Suppl 2):S251–S257. doi:10.4103/0973-1296.16601726664013
  • RuanQ, YangK, WangW, JiangL, SongJ. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi:10.1007/s00134-020-05991-x32125452
  • El TahirKEH, AshourMMS, Al-HarbiMM. The cardiovascular actions of the volatile oil of the black seed (Nigella sativa) in rats: elucidation of the mechanism of action. Gen Pharmacol. 1993;24(5):1123–1131. doi:10.1016/0306-3623(93)90359-68270171
  • EnomotoS, AsanoR, IwahoriY, et al. Hematological studies on black cumin oil from the seeds of Nigella sativa L. Biol Pharm Bull. 2001;24(3):307–310. doi:10.1248/bpb.24.30711256491
  • RandhawaMA, AlghamdiMS, MaulikSK. The effect of thymoquinone, an active component of Nigella sativa, on isoproterenol induced myocardial injury. Pak J Pharm Sci. 2013;26(6):1215–1219.24191329
  • GaleottiC, BayryJ. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413–414. doi:10.1038/s41584-020-0448-732499548
  • VerdoniL, MazzaA, GervasoniA, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–1778. doi:10.1016/S0140-6736(20)31103-X32410760
  • PoulettyM, BoroccoC, OuldaliN, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79(8):999–1006. doi:10.1136/annrheumdis-2020-21796032527868
  • ToubianaJ, PoiraultC, CorsiaA, et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: prospective observational study. BMJ. 2020;369:m2094. doi:10.1136/bmj.m209432493739
  • WaltuchT, GillP, ZinnsLE, et al. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am J Emerg Med. 2020;38(10):2246.e3–2246.e6. doi:10.1016/j.ajem.2020.05.058
  • KoshakA, KoshakE, HeinrichM. Medicinal benefits of Nigella sativa in bronchial asthma: a literature review. Saudi Pharm J. 2017;25(8):1130–1136. doi:10.1016/j.jsps.2017.07.00230166900
  • GoyalSN, PrajapatiCP, GorePR, et al. Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol. 2017;8(656). doi:10.3389/fphar.2017.00656
  • al-ShabanahOA, BadaryOA, NagiMN, al-GharablyNM, al-RikabiAC, al-BekairiAM. Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res. 1998;17(2):193–198.9700580
  • IsaevNK, ChetverikovNS, StelmashookEV, GenrikhsEE, KhaspekovLG, IllarioshkinSN. Thymoquinone as a potential neuroprotector in acute and chronic forms of cerebral pathology. Biochemistry (Mosc). 2020;85(2):167–176. doi:10.1134/s000629792002004232093593
  • NagiMN, AlamK, BadaryOA, al-ShabanahOA, al-SawafHA, al-BekairiAM. Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochem Mol Biol Int. 1999;47(1):153–159. doi:10.1080/1521654990020115310092955
  • BadaryOA, NagiMN, al-ShabanahOA, al-SawafHA, al-SohaibaniMO, al-BekairiAM. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol. 1997;75(12):1356–1361. doi:10.1139/y97-1699534946
  • ArslanS, EthemG, CoskunO, GürelA, SayanH, CelikI. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rat. Nutr Res. 2005;25:673–680. doi:10.1016/j.nutres.2005.06.004
  • AlrashediM. The protective role of thymoquinone against drugs toxicity: a review. J Pharm Res Int. 2018;1–11. doi:10.9734/JPRI/2018/44944
  • TittarelliR, PellegriniM, ScarpelliniMG, et al. Hepatotoxicity of paracetamol and related fatalities. Eur Rev Med Pharmacol Sci. 2017;21(1 Suppl):95–101.
  • BinduS, MazumderS, BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. BiochemPharmacol. 2020;180:114147. doi:10.1016/j.bcp.2020.114147
  • NagiMN, AlmakkiHA, Sayed-AhmedMM, Al-BekairiAM. Thymoquinone supplementation reverses acetaminophen-induced oxidative stress, nitric oxide production and energy decline in mice liver. Food Chem Toxicol. 2010;48(8–9):2361–2365. doi:10.1016/j.fct.2010.05.07220561950
  • AycanIÖ, TüfekA, TokgözO, et al. Thymoquinone treatment against acetaminophen-induced hepatotoxicity in rats. Int J Surg. 2014;12(3):213–218. doi:10.1016/j.ijsu.2013.12.01324389315
  • AycanİÖ, ElpekÖ, AkkayaB, et al. Diclofenac induced gastrointestinal and renal toxicity is alleviated by thymoquinone treatment. Food Chem Toxicol. 2018;118:795–804. doi:10.1016/j.fct.2018.06.03829935248
  • IsikAF, KatiI, BayramI, OzbekH. A new agent for treatment of acute respiratory distress syndrome: thymoquinone. An experimental study in a rat model. Eur J Cardiothorac Surg. 2005;28(2):301–305. doi:10.1016/j.ejcts.2005.04.01215949945
  • AhmadA, AlkharfyKM, JanBL, et al. Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp Lung Res. 2020;46(3–4):53–63. doi:10.1080/01902148.2020.172652932053036
  • BasarslanF, YilmazN, AtesS, et al. Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2012;31(7):726–733. doi:10.1177/096032711143318522318306
  • WongA. COVID-19 and toxicity from potential treatments: panacea or poison. Emerg Med Australas. 2020;32(4):697–699. doi:10.1111/1742-6723.1353732378805
  • CharyMA, BarbutoAF, IzadmehrS, HayesBD, BurnsMM. COVID-19: therapeutics and their toxicities. J Med Toxicol. 2020;16(3):284–294. doi:10.1007/s13181-020-00777-532356252
  • OjhaS, AzimullahS, MohanrajR, et al. Thymoquinone protects against myocardial ischemic injury by mitigating oxidative stress and inflammation. Evid Based Complement Alternat Med. 2015;2015:143629. doi:10.1155/2015/14362926101531
  • XiaoJ, KeZP, ShiY. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J Cell Biochem. 2018;119(9):7212–7217. doi:10.1002/jcb.2687829932232
  • Bruce-HickmanD, SajeedSM, PangYH, SeowCS, ChenW, Gulati KansalM. Bowel ulceration following tocilizumab administration in a COVID-19 patient. BMJ Open Gastroenterol. 2020;7(1):e000484. doi:10.1136/bmjgast-2020-000484
  • Cobourne-DuvalMK, TakaE, MendoncaP, SolimanKFA. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J Neuroimmunol. 2018;320:87–97. doi:10.1016/j.jneuroim.2018.04.01829759145
  • OdehF, IsmailSI, Abu-DahabR, MahmoudIS, Al BawabA. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv. 2012;19(8):371–377. doi:10.3109/10717544.2012.72750023043626
  • AlkharfyKM, AhmadA, KhanRMA, Al-AsmariM. High-performance liquid chromatography of thymoquinone in rabbit plasma and its application to pharmacokinetics. J Liq Chromatogr Relat Technol. 2013;36(16):2242–2250. doi:10.1080/10826076.2012.717062
  • AlkharfyKM, AhmadA, KhanRM, Al-ShaghaWM. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur J Drug Metab Pharmacokinet. 2015;40(3):319–323. doi:10.1007/s13318-014-0207-824924310
  • AlkharfyKM, AliFA, AlkharfyMA, et al. Effect of compromised liver function and acute kidney injury on the pharmacokinetics of thymoquinone in a rat model. Xenobiotica. 2020;50(7):858–862. doi:10.1080/00498254.2020.174531932216504
  • KalamMA, RaishM, AhmedA, et al. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. Mater Sci Eng C Mater Biol Appl. 2017;76:319–329. doi:10.1016/j.msec.2017.03.08828482534
  • LupidiG, ScireA, CamaioniE, et al. Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine. 2010;17(10):714–720. doi:10.1016/j.phymed.2010.01.01120171066
  • El-NajjarN, KetolaRA, NissiläT, et al. Impact of protein binding on the analytical detectability and anticancer activity of thymoquinone. J Chem Biol. 2011;4(3):97–107. doi:10.1007/s12154-010-0052-422229047
  • LupidiG, CamaioniE, KhaliféH, et al. Characterization of thymoquinone binding to human α1-acid glycoprotein. J Pharm Sci. 2012;101(7):2564–2573. doi:10.1002/jps.2313822467430
  • WirriesA, BreyerS, QuintK, SchobertR, OckerM. Thymoquinone hydrazone derivatives cause cell cycle arrest in p53-competent colorectal cancer cells. Exp Ther Med. 2010;1(2):369–375. doi:10.3892/etm_0000005822993551
  • ElmowafyM, SamyA, RaslanMA, et al. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via Nanostructured Lipid Carrier (NLC) formulation. AAPS PharmSciTech. 2016;17(3):663–672. doi:10.1208/s12249-015-0391-026304932
  • NgWK, Saiful YazanL, YapLH, Wan NorHafizaWA, HowCW, AbdullahR. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). Biomed Res Int. 2015;2015:263131. doi:10.1155/2015/26313125632388
  • OngYS, Saiful YazanL, NgWK, et al. Acute and subacute toxicity profiles of thymoquinone-loaded nanostructured lipid carrier in BALB/c mice. Int J Nanomedicine. 2016;11:5905–5915. doi:10.2147/IJN.S11420527877037
  • El-FarAH, Al JaouniSK, LiW, MousaSA. Protective roles of thymoquinone nanoformulations: potential nanonutraceuticals in human diseases. Nutrients. 2018;10(10):1369. doi:10.3390/nu10101369
  • BadaryOA. Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. J Ethnopharmacol. 1999;67(2):135–142. doi:10.1016/s0378-8741(98)00242-610619376
  • BadaryOA, Abdel-NaimAB, Abdel-WahabMH, HamadaFM. The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology. 2000;143(3):219–226. doi:10.1016/s0300-483x(99)00179-110755708
  • AwadAS, KamelR, SheriefMA. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischaemia-reperfusion in rats. J Pharm Pharmacol. 2011;63(8):1037–1042. doi:10.1111/j.2042-7158.2011.01303.x21718287
  • BaiT, YangY, WuYL, et al. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1-AMPK signaling pathway in mice. Int Immunopharmacol. 2014;19(2):351–357. doi:10.1016/j.intimp.2014.02.00624560906
  • ElKhoelyA, HafezHF, AshmawyAM, et al. Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: mechanistic perspectives. J Nat Med. 2015;69(3):313–323. doi:10.1007/s11418-015-0895-725796541
  • GholamnezhadZ, HavakhahS, BoskabadyMH. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: a review. J Ethnopharmacol. 2016;190:372–386. doi:10.1016/j.jep.2016.06.06127364039
  • AbulfadlYS, El-MaraghyNN, AhmedAAE, NofalS, BadaryOA. Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes. Neurol Res. 2018;40(4):324–333. doi:10.1080/01616412.2018.144177629464986
  • BadaryOA, Al-ShabanahOA, NagiMN, Al-BekairiAM, ElmazarMMA. Acute and subchronic toxicity of thymoquinone in mice. Drug Dev Res. 1998;44(2‐3):56–61. doi:10.1002/(SICI)1098-2299(199806/07)44:2/3<56::AID-DDR2>3.0.CO;2-9
  • QadriSM, MahmudH, FöllerM, LangF. Thymoquinone-induced suicidal erythrocyte death. Food Chem Toxicol. 2009;47(7):1545–1549. doi:10.1016/j.fct.2009.03.03719358869
  • KhaderM, BresgenN, EcklPM. In vitro toxicological properties of thymoquinone. Food Chem Toxicol. 2009;47(1):129–133. doi:10.1016/j.fct.2008.10.01919010375
  • Al-AliA, AlkhawajahAA, RandhawaMA, ShaikhNA. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad. 2008;20(2):25–27.19385451
  • AbukhaderMM. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J Pharm Sci. 2012;74(3):195–200. doi:10.4103/0250-474x.10606023440704
  • TavakkoliA, MahdianV, RazaviBM, HosseinzadehH. Review on Clinical Trials of Black Seed (Nigella sativa) and its Active Constituent, Thymoquinone. J Pharmacopunct. 2017;20(3):179–193. doi:10.3831/kpi.2017.20.021
  • Asaduzzaman KhanM, TaniaM, FuS, FuJ. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget. 2017;8(31):51907–51919. doi:10.18632/oncotarget.1720628881699
  • AlamriA, BamosaA. Phase I Safety and Clinical Activity Study of Thymoquinone in patients with advanced refractory malignant disease. Shiraz Med J. 2009;10:107–111.