132
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Immunomodulatory Effect of a New Ingredients Group Extracted from Astragalus Through Membrane Separation Technique

, &
Pages 1595-1607 | Published online: 15 Apr 2021

References

  • LiX, LuQ, DongY, et al. A review of recent research progress on the astragalus genus. Molecules. 2014;19:18850–18880. doi:10.3390/molecules19111885025407722
  • ShanC, SunB, DalloulRA, et al. Effect of the oral administration of astragalus polysaccharides on jejunum mucosal immunity in chickens vaccinated against new castle disease. Microb Pathog. 2019;135:103621. doi:10.1016/j.micpath.2019.10362131310831
  • ChenZ, LiuL, GaoC, et al. Astragali Radix (Huangqi): a promising edible immunomodulatory herbal medicine. J Ethnopharmacol. 2020;258:112895. doi:10.1016/j.jep.2020.11289532330511
  • QinS, LinJ, HuangK. Immune regulation effects of astragali radix. Chin Arch Traditional Chin Med. 2017;3:699–702.
  • AbuelsaadAS. Supplementation with astragalus polysaccharides alters aeromonas-induced tissue-specific cellular immune response. Microb Pathog. 2014;66:48–56. doi:10.1016/j.micpath.2013.12.00524456824
  • LuoH, LiQ, FlowerA, LewithG, LiuJ. Comparison of effectiveness and safety between granules and decoction of Chinese herbal medicine: a systematic review of randomized clinical trials. J Ethnopharmacol. 2012;140:555–567. doi:10.1016/j.jep.2012.01.03122343092
  • ChenH, ZhouX, ZhangJ. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr Polym. 2014;111:567–575. doi:10.1016/j.carbpol.2014.05.03325037388
  • ChikariF, HanJ, WangY, et al. Dual-frequency ultrasound-assisted alcohol/salt aqueous two phase extraction and purification of Astragalus polysaccharides. J Food Process Eng. 2020;43:e13366. doi:10.1111/jfpe.13366
  • NeginS, AliSM, MohsenB, HasanAG. Concentration of pistachio hull extract antioxidants using membrane separation and reduction of membrane fouling during process. Food Sci Nutr. 2018;6:1–10.
  • AvramAM, MorinP, BrownmillerC, HowardLR, SenguptaA, WickramasingheS. Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod Process. 2017;106:91–101. doi:10.1016/j.fbp.2017.07.006
  • PeiJ, JiangL. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique. Int J Antimicrob Ag. 2017;50:41–46. doi:10.1016/j.ijantimicag.2017.02.013
  • TangW, LiuC, LiuJ, et al. Purification of polysaccharide from Lentinus edodes water extract by membrane separation and its chemical composition and structure characterization. Food Hydrocoll. 2020;105:105851. doi:10.1016/j.foodhyd.2020.105851
  • ChangH, LiuQ, BaiWF, et al. Protective effects of Amygdalus Mongolica on rats with renal fibrosis based on serum metabolomics. J Ethnopharmacol. 2020;257:112858. doi:10.1016/j.jep.2020.11285832278030
  • CaiH, SuS, LiY, et al. Protective effects of salvia miltiorrhiza on adenine-induced chronic renal failure by regulating the metabolic profiling and modulating the NADPH oxidase/ROS/ERK and TGF-β/Smad signaling pathways. J Ethnopharmacol. 2018;212:153–165. doi:10.1016/j.jep.2017.09.02129032117
  • JiaX, SunC, ZuoY, et al. Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. BMC Genom. 2016;17:188. doi:10.1186/s12864-016-2554-0
  • LiuW, LiC, HuangJ, et al. Application of pathways activity profiling to urine metabolomics for screening Qi-tonifying biomarkers and metabolic pathways of honey-processed Astragalus. J Sep Sci. 2018;41:2661–2671. doi:10.1002/jssc.20170137129570937
  • WangH, LiuA, ZhaoW, et al. Metabolomics research reveals the mechanism of action of astragalus polysaccharide in rats with digestive system disorders. Molecules. 2018;23:3333. doi:10.3390/molecules23123333
  • ZengH, XiY, LiY, WangZ, ZhangL, HanZ. Analysis of astragalus polysaccharide intervention in heat-stressed dairy cows’ serum metabolomics. Animals (Basel). 2020;10:574. doi:10.3390/ani10040574
  • PeláezB, CampilloJA, López-AsenjoJA, SubizaJL. Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol. 2001;166:6608–6615. doi:10.4049/jimmunol.166.11.660811359814
  • LvY, HuangJ, CaiM, et al. Comparison of experimental murine immunodeficiency models induced by cyclophosphamide and hydrocortisone. Wei Sheng Yan Jiu. 2012;41:951–955.23424875
  • GosioMG, GuerassimovA. Chronic obstructive pulmonary disease. Inflammation of small airways and lung parenchyma. Am J Respir Crit Care Med. 1999;160:S21–S25. doi:10.1164/ajrccm.160.supplement_1.710556164
  • LuckheeramRV, ZhouR, VermaAD, XiaB. CD4+ T Cells: differentiation and functions. Clin Dev Immunol. 2012;12:925135.
  • Davy-MendezT, NapravnikS, ZakharovaO, et al. Acute HIV infection and CD4/CD8 ratio normalization after antiretroviral therapy initiation. J Acquire Immune Deficiency Syndr. 2018;79:510–518. doi:10.1097/QAI.0000000000001843
  • WangY, LiuL, MaY, et al. Chemical Discrimination of astragalus mongholicus and astragalus membranaceus based on metabolomics using UHPLC-ESI-Q-TOF-MS/MS approach. Molecules. 2019;24:4064. doi:10.3390/molecules24224064
  • WangEB, LiuT, LuXL, et al. Comparison of aerial parts of astragalus membranaceus and astragali radix based on chemical constituents and pharmacological effects. Food Agr Immunol. 2019;30:1046–1066. doi:10.1080/09540105.2019.1663154
  • LiP, YinYL, LiD, KinSW, WuG. Amino acids and immune function. Brit J Nutr. 2007;98:237–252. doi:10.1017/S000711450769936X17403271
  • ChenC, SanderJE, DaleNM. The effect of dietary lysine deficiency on the immune response to Newcastle disease vaccination in chickens. Avian Dis. 2003;47:1346–1351. doi:10.1637/700814708981
  • GriffithRS, DeLongDC, NelsonJD. Relation of arginine–lysine antagonism to herpes-simplex growth in tissue culture. Chemotherapy. 1981;27:209–213. doi:10.1159/0002379796262023
  • KonashiS, TakahashiK, AkibaY. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Brit J Nutr. 2000;83:449–456.10858703
  • FrohM, ThurmanRG, WheelerMD. Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes. Am J Physiol Gastrointest Liver Physiol. 2002;283:G856–G863. doi:10.1152/ajpgi.00503.200112223345
  • ZhongZ, WheelerMD, LiX, et al. L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care. 2003;6:229–240. doi:10.1097/00075197-200303000-0001312589194
  • WheelerMD, ThurmanRG. Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine. Am J Physiol. 1999;277:L952–L959. doi:10.1152/ajplung.1999.277.5.L95210564180
  • Alarcon-AguilarFJ, Almanza-PerezJ, BlancasG, et al. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol. 2008;599:152–158. doi:10.1016/j.ejphar.2008.09.04718930730
  • StachlewitzRF, LiX, SmithS, BunzendahlH, GravesLM, ThurmanRG. Glycine inhibits growth of T lymphocytes by an IL-2-independent mechanism. J Immunol. 2000;164:176–182. doi:10.4049/jimmunol.164.1.17610605009
  • HeissigH, UrbanKA, HastedtK, ZünklerBJ, PantenU. Mechanism of the insulin-releasing action of alpha-ketoisocaproate and related-keto acid anions. Mol Pharmacol. 2005;68:1097–1105. doi:10.1124/mol.105.01538816014804
  • ChengS, ZhangS, YunJ. Recent advances in microbial synthesis of α-ketoisocaproate. Chem Industry Eng Progress. 2016;37:4821–4829. doi:10.16085/j.issn.1000-6613
  • JiL, ZhaoX, ZhangB, et al. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses. Immunity. 2019;51:272–284. doi:10.1016/j.immuni.2019.06.00731399282